function gaussian_Callback(hObject, eventdata, handles) % hObject handle to gaussian (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global T axes(handles.axes2); T=getimage; p=inputdlg({'噪声方差为:'},'输入',1,{'0.05'}); if isempty(p)==1 %errordlg('没有输入!','error'); return else p=str2num(p{1}); I=imnoise(T,'gaussian',0,p); %添加白噪声,其平均值为0,方差为0.05 imshow(I); end
时间: 2024-02-01 09:04:08 浏览: 65
这是一个 MATLAB GUI 中的回调函数,用于在 GUI 界面上添加高斯白噪声到图像中,并显示添加噪声后的图像。
函数的基本流程如下:
1. 获取当前 GUI 界面中的图像 T,使用 `getimage` 函数获取。
2. 弹出输入对话框,让用户输入噪声方差 p。
3. 如果用户没有输入,则直接返回;否则将用户输入转换为数值类型。
4. 使用 `imnoise` 函数向图像中添加高斯白噪声,噪声的均值为0,方差为 p。
5. 在 GUI 界面的 axes2 中显示添加噪声后的图像,使用 `imshow` 函数。
需要注意的是,该函数中使用了 `global` 关键字,表示 T 和 axes2 是全局变量,可以在其他函数中访问。函数中使用了 `inputdlg` 函数弹出对话框,让用户输入噪声方差。同时,函数中调用了 `imnoise` 函数向图像中添加高斯白噪声,并使用 `imshow` 函数在界面上显示添加噪声后的图像。
相关问题
%高斯噪声 % --- Executes on button press in pushbutton12. function pushbutton12_Callback(hObject, eventdata, handles) % hObject handle to pushbutton12 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global bw_invert noisy = imnoise(bw_invert, 'gaussian', 0, 0.01); axes(handles.axes2); cla; imshow(noisy); guidata(hObject,handles);
这段MATLAB代码实现了一个名为"高斯噪声"的按钮的回调函数。当用户点击这个按钮时,它会将全局变量bw_invert所对应的二值图像添加高斯噪声,并在GUI界面上的axes2中显示噪声图像。
imnoise函数的第一个参数bw_invert是输入的二值图像,'gaussian'表示添加高斯噪声,0表示噪声的均值,0.01表示噪声的方差。最后使用imshow函数在axes2中显示添加噪声后的图像。
这段代码中使用了MATLAB的全局变量,因此需要在其他地方定义和初始化bw_invert变量。例如:
```matlab
global bw_invert;
bw = imread('binary_image.bmp');
bw_invert = imcomplement(im2bw(bw));
```
这段代码中,我们首先读取一个二值图像,然后使用imcomplement函数进行二值图像的反转,再使用im2bw函数将图像转换为二值图像,并将其赋值给全局变量bw_invert。这样,在高斯噪声按钮的回调函数中就可以直接使用bw_invert变量了。
function slider2_Callback(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider global im; % 提示:get(hObject,'Value')返回滑块的位置 a=get(handles.slider2,'value'); x1=imadjust(im,[0.3 0.7],[0 1],a); axes(handles.axes2); imshow(x1); % --- Executes during object creation, after setting all properties. function slider2_CreateFcn(hObject, eventdata, handles) % hObject handle to slider2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end 像这样写一个调节高斯噪声强度的matlab GUI代码
好的,以下是一个简单的 MATLAB GUI 代码,可以通过滑动调节高斯噪声的强度:
```matlab
function varargout = GaussianNoiseGUI(varargin)
% GAUSSIANNOISEGUI MATLAB code for GaussianNoiseGUI.fig
% GAUSSIANNOISEGUI, by itself, creates a new GAUSSIANNOISEGUI or raises the existing
% singleton*.
%
% H = GAUSSIANNOISEGUI returns the handle to a new GAUSSIANNOISEGUI or the handle to
% the existing singleton*.
%
% GAUSSIANNOISEGUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in GAUSSIANNOISEGUI.M with the given input arguments.
%
% GAUSSIANNOISEGUI('Property','Value',...) creates a new GAUSSIANNOISEGUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before GaussianNoiseGUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to GaussianNoiseGUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help GaussianNoiseGUI
% Last Modified by GUIDE v2.5 16-Aug-2021 23:06:41
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @GaussianNoiseGUI_OpeningFcn, ...
'gui_OutputFcn', @GaussianNoiseGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before GaussianNoiseGUI is made visible.
function GaussianNoiseGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GaussianNoiseGUI (see VARARGIN)
% Choose default command line output for GaussianNoiseGUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes GaussianNoiseGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% Load sample image
handles.im = imread('peppers.png');
axes(handles.axes1);
imshow(handles.im);
title('Original Image');
% Set slider range and default value
set(handles.slider1, 'Min', 0);
set(handles.slider1, 'Max', 1);
set(handles.slider1, 'Value', 0.1);
% Call slider1_Callback to apply initial Gaussian noise
slider1_Callback(handles.slider1, eventdata, handles);
% --- Outputs from this function are returned to the command line.
function varargout = GaussianNoiseGUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Apply Gaussian noise to image
handles.a = get(handles.slider1, 'Value');
handles.im_noisy = imnoise(handles.im, 'gaussian', 0, handles.a);
axes(handles.axes2);
imshow(handles.im_noisy);
title(['Gaussian Noise (Intensity = ' num2str(handles.a) ')']);
% Update handles structure
guidata(hObject, handles);
% --- Executes during object creation, after setting all properties.
function slider1_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
```
这个 GUI 包含两个 axes 对象,一个用于显示原始图像,另一个用于显示加了高斯噪声的图像。代码中的 `imread('peppers.png')` 可以替换为你自己的图像文件名或路径。
在 `GaussianNoiseGUI_OpeningFcn` 中,我们加载了一个示例图像 `peppers.png`,并设置了 `slider1` 的范围和默认值。我们还调用了 `slider1_Callback` 函数,以便在打开 GUI 时应用默认的高斯噪声。
在 `slider1_Callback` 函数中,我们通过 `imnoise` 函数向图像中添加高斯噪声,然后将其显示在 `axes2` 中。我们还更新了 `handles` 结构体中的 `a` 和 `im_noisy` 变量,以便在其他函数中访问和使用它们。
最后,我们还提供了一个 `slider1_CreateFcn` 函数,用于设置 `slider1` 的背景颜色。
阅读全文