set_noise =10; BO = bwareaopen(BW,set_noise); 用python怎样获得相同结果

时间: 2024-03-23 18:43:10 浏览: 18
这个 MATLAB 代码的作用是对二值化图像 `BW` 进行开运算,移除面积小于 `set_noise` 的连通区域。 在 Python 中,你可以使用 `scikit-image` 库来实现类似的功能。具体代码如下: ```python from skimage import morphology set_noise = 10 BO = morphology.remove_small_objects(BW, set_noise) ``` 其中 `morphology.remove_small_objects` 函数可以移除面积小于指定阈值的连通区域,其第一个参数为输入的二值化图像,第二个参数为阈值。
相关问题

v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6*sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(m*n/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; %获取图像中心点的像素坐标 x_res=1920; y_res=1080; v_fov=46; f=50; x_c = x_res / 2; y_c = y_res / 2; %将图像中心点的像素坐标转换为相对坐标 x_c_rel = - (x_c - 1); y_c_rel = y_c - 1; %将相对坐标转换为实际坐标 x = (x_c_rel / x_res) * 2 * tan(10 / 2) * f; y = (y_c_rel / y_res) * 2 * tan(9 / 2) * f; end代码修改显示坐标

v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6*sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(m*n/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; %获取图像中心点的像素坐标 x_res=1920; y_res=1080; v_fov=46; f=50; x_c = x_res / 2; y_c = y_res / 2; %将图像中心点的像素坐标转换为相对坐标 x_c_rel = - (x_c - 1); y_c_rel = y_c - 1; %将相对坐标转换为实际坐标 x = (x_c_rel / x_res) * 2 * tan(v_fov / 2) * f; y = (y_c_rel / y_res) * 2 * tan(v_fov * y_res / x_res / 2) * f; % 显示实际坐标 disp(['x: ', num2str(x), ', y: ', num2str(y)]); end

v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(mn/1000), 8); % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; %获取图像中心点的像素坐标 x_res=1920; y_res=1080; v_fov=46; f=50; x_c = x_res / 2; y_c = y_res / 2; %将图像中心点的像素坐标转换为相对坐标 x_c_rel = - (x_c - 1); y_c_rel = y_c - 1; %将相对坐标转换为实际坐标 x = (x_c_rel / x_res) * 2 * tan(10 / 2) * f; y = (y_c_rel / y_res) * 2 * tan(9 / 2) * f; end代码修改显示质心坐标

v = VideoReader('shoujilux7.mp4'); while hasFrame(v) frame = readFrame(v); gray_frame = rgb2gray(frame); % gamma校正 gamma = 1.5; gamma_corrected = imadjust(gray_frame,[],[],gamma); % 高斯滤波 sigma = 1; hsize = ceil(6*sigma); h = fspecial('gaussian', hsize, sigma); filtered_frame = imfilter(gamma_corrected, h); % Otsu阈值分割 T = graythresh(filtered_frame); [m, n] = size(filtered_frame); E = bwareaopen(im2bw(filtered_frame, T), round(m*n/1000), 8); %修改面积计算公式 % Canny边缘检测 canny_edge = edge(E, 'canny'); % 形态学膨胀 se = strel('disk', 2); dilated_edge = imdilate(canny_edge, se); % 连通域分析 stats = regionprops('table', dilated_edge, 'Area', 'Centroid'); % 筛选面积最大的连通区域 [~, idx] = max(stats.Area); centroid = stats.Centroid(idx, :); % 显示帧和质心 imshow(dilated_edge); hold on; plot(centroid(1), centroid(2), 'r+', 'MarkerSize', 10); hold off; % 获取图像中心点的像素坐标 x_res = 1920; y_res = 1080; v_fov = 46; f = 50; x_c = x_res / 2; y_c = y_res / 2; % 将图像中心点的像素坐标转换为相对坐标 x_c_rel = - (x_c - 1); y_c_rel = y_c - 1; % 将相对坐标转换为实际坐标并显示 x = (x_c_rel / x_res) * 2 * tan(10 / 2) * f; y = (y_c_rel / y_res) * 2 * tan(9 / 2) * f; fprintf('当前帧的质心坐标为:(%f, %f)\n', centroid(1), centroid(2)); fprintf('当前帧的实际坐标为:(%f, %f)\n', x, y); end

相关推荐

最新推荐

recommend-type

vb+SQL车辆管理系统设计(论文+源代码).zip

vb+SQL车辆管理系统设计(论文+源代码)
recommend-type

基于C#编程实现事件总线源码+项目说明.zip

事件总线这个概念对你来说可能很陌生,但提到观察者(发布-订阅)模式,你也许就很熟悉。事件总线是对发布-订阅模式的一种实现。它是一种集中式事件处理机制,允许不同的组件之间进行彼此通信而又不需要相互依赖,达到一种解耦的目的。
recommend-type

request-validator.cpython-37

request-validator.cpython-37
recommend-type

PatchNavicat是一个用于po姐Navicat数据库管理工具的插件或工具

Navicat是一款流行的数据库前端用户界面工具,支持多种数据库系统,如MySQL、SQL Server、SQLite、Oracle和PostgreSQL等。以下是关于PatchNavicat的使用步骤和相关信息: 1. 将下载的PatchNavicat.exe文件复制到Navicat的安装目录下,确保与navicat.exe文件位于同一目录。 2. 在安装Navicat后,确保Navicat程序已经完全关闭。 3. 双击PatchNavicat.exe文件运行它。在某些情况下,可能需要选择Navicat的安装目录或navicat.exe文件作为目标进行po姐。 如果PatchNavicat运行成功并显示“Patch Success!”或类似的消息,则表示Navicat已经被成功po姐。此时,可以重新启动Navicat并检查是否需要注册或输入激活码。如果不需要,则说明po姐成功。使用po姐工具可能存在法律和道德风险。尽管许多用户选择使用po姐版软件来节省成本,但这可能违反了软件的使用协议和版权法。
recommend-type

苹果cms v8漂亮精品动漫风格网站模板

苹果CMS精品动漫风格网站模板,新春喜气自适应模板视频影视网站模板,复制文件template目录,后台设置模板为2016new目录刷新即可。
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。