GoogleNet代码实现
时间: 2023-06-24 07:03:29 浏览: 175
RESNET、GOOGLENET等Python代码实现
下面是GoogleNet的PyTorch实现代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class Inception(nn.Module):
def __init__(self, in_channels, out1x1, reduce3x3, out3x3, reduce5x5, out5x5, pool):
super(Inception, self).__init__()
# 1x1 conv branch
self.branch1 = nn.Conv2d(in_channels, out1x1, kernel_size=1)
# 3x3 conv branch
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels, reduce3x3, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(reduce3x3, out3x3, kernel_size=3, padding=1)
)
# 5x5 conv branch
self.branch3 = nn.Sequential(
nn.Conv2d(in_channels, reduce5x5, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(reduce5x5, out5x5, kernel_size=5, padding=2)
)
# maxpool branch
self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
nn.Conv2d(in_channels, pool, kernel_size=1)
)
def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)
outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)
class GoogleNet(nn.Module):
def __init__(self, num_classes=1000):
super(GoogleNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2_reduce = nn.Conv2d(64, 64, kernel_size=1)
self.conv2 = nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.pool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.pool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout2d(p=0.4)
self.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2_reduce(x)))
x = self.inception3a(x)
x = self.inception3b(x)
x = self.pool3(x)
x = self.inception4a(x)
x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
x = self.inception4e(x)
x = self.pool4(x)
x = self.inception5a(x)
x = self.inception5b(x)
x = self.avgpool(x)
x = self.dropout(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这里实现了GoogleNet的基本结构,包括Inception模块和整个网络的前向计算。在实现中使用了PyTorch框架提供的模块化接口,代码结构相对清晰,并且方便调用。
阅读全文