用widerface测试集测试MTCNN网络准确率代码
时间: 2023-12-11 10:02:13 浏览: 79
人脸检测MTCNN
以下是用Wider Face测试集测试MTCNN网络准确率的代码:
```python
import os
import cv2
import numpy as np
from tqdm import tqdm
from mtcnn import MTCNN
# Load Wider Face testing dataset
wider_face_dir = "path_to_wider_face_testing_dataset"
file_list = []
with open(os.path.join(wider_face_dir, "wider_face_test_filelist.txt"), "r") as f:
for line in f.readlines():
file_list.append(line.strip())
# Load MTCNN model
mtcnn = MTCNN()
# Test MTCNN on Wider Face testing dataset
num_images = len(file_list)
num_faces = 0
for i in tqdm(range(num_images)):
image_path = os.path.join(wider_face_dir, "images", file_list[i])
img = cv2.imread(image_path)
result = mtcnn.detect_faces(img)
num_faces += len(result)
print("MTCNN detected {} faces in {} images".format(num_faces, num_images))
```
在上面的代码中,我们首先从Wider Face测试集中加载图像列表,然后使用MTCNN网络对每个图像进行人脸检测。最后,我们汇总所有图像中检测到的人脸数,并打印结果。
请注意,这只是一个简单的示例代码,您可能需要对其进行修改以实现更详细的评估,例如计算每个图像中检测到的真实人脸数和误检率等指标。
阅读全文