c语言代码实现图像统计特性计算
时间: 2024-02-13 11:59:59 浏览: 13
以下是使用C语言实现图像统计特性计算的示例代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define IMAGE_WIDTH 256
#define IMAGE_HEIGHT 256
#define IMAGE_SIZE (IMAGE_WIDTH * IMAGE_HEIGHT)
// 读取PGM格式图像文件,并返回图像的像素值数组
unsigned char* read_pgm_image(const char* filename)
{
FILE* fp = fopen(filename, "rb");
if (!fp) {
printf("无法打开文件: %s\n", filename);
return NULL;
}
char buf[16];
fgets(buf, sizeof(buf), fp);
if (strcmp(buf, "P5\n")) {
printf("不是PGM格式图像文件\n");
fclose(fp);
return NULL;
}
fgets(buf, sizeof(buf), fp);
int width, height;
sscanf(buf, "%d %d", &width, &height);
if (width != IMAGE_WIDTH || height != IMAGE_HEIGHT) {
printf("图像尺寸不正确\n");
fclose(fp);
return NULL;
}
fgets(buf, sizeof(buf), fp);
int maxval;
sscanf(buf, "%d", &maxval);
if (maxval != 255) {
printf("不支持的像素深度\n");
fclose(fp);
return NULL;
}
unsigned char* data = (unsigned char*)malloc(IMAGE_SIZE);
fread(data, 1, IMAGE_SIZE, fp);
fclose(fp);
return data;
}
// 计算灰度直方图
void calc_histogram(const unsigned char* data, int* hist)
{
memset(hist, 0, sizeof(int) * 256);
for (int i = 0; i < IMAGE_SIZE; i++) {
hist[data[i]]++;
}
}
// 计算均值、方差、标准差
void calc_mean_var_stddev(const unsigned char* data, double* mean, double* var, double* stddev)
{
*mean = 0.0;
for (int i = 0; i < IMAGE_SIZE; i++) {
*mean += data[i];
}
*mean /= IMAGE_SIZE;
*var = 0.0;
for (int i = 0; i < IMAGE_SIZE; i++) {
*var += (data[i] - *mean) * (data[i] - *mean);
}
*var /= IMAGE_SIZE;
*stddev = sqrt(*var);
}
// 计算熵
void calc_entropy(const unsigned char* data, double* entropy)
{
int hist[256];
calc_histogram(data, hist);
*entropy = 0.0;
for (int i = 0; i < 256; i++) {
double p = (double)hist[i] / IMAGE_SIZE;
if (p > 0.0) {
*entropy -= p * log2(p);
}
}
}
// 计算对比度
void calc_contrast(const unsigned char* data, double* contrast)
{
double mean, var, stddev;
calc_mean_var_stddev(data, &mean, &var, &stddev);
*contrast = stddev / mean;
}
// 计算相关性
void calc_correlation(const unsigned char* data, double* correlation)
{
double mean, var, stddev;
calc_mean_var_stddev(data, &mean, &var, &stddev);
double sum_xy = 0.0, sum_x = 0.0, sum_y = 0.0;
for (int i = 0; i < IMAGE_SIZE; i++) {
double x = data[i] - mean;
double y = (double)i / IMAGE_SIZE - 0.5;
sum_xy += x * y;
sum_x += x;
sum_y += y;
}
*correlation = sum_xy / sqrt(sum_x * sum_y * var * IMAGE_SIZE);
}
// 主函数
int main(int argc, char** argv)
{
if (argc < 2) {
printf("用法: %s filename.pgm\n", argv[0]);
return 0;
}
const char* filename = argv[1];
unsigned char* data = read_pgm_image(filename);
if (!data) {
return 0;
}
int hist[256];
calc_histogram(data, hist);
double mean, var, stddev;
calc_mean_var_stddev(data, &mean, &var, &stddev);
double entropy;
calc_entropy(data, &entropy);
double contrast;
calc_contrast(data, &contrast);
double correlation;
calc_correlation(data, &correlation);
printf("图像文件: %s\n", filename);
printf("像素均值: %.2f\n", mean);
printf("像素方差: %.2f\n", var);
printf("像素标准差: %.2f\n", stddev);
printf("像素熵: %.2f\n", entropy);
printf("像素对比度: %.2f\n", contrast);
printf("像素相关性: %.2f\n", correlation);
free(data);
return 0;
}
```
以上代码实现了读取PGM格式图像文件,并计算了图像的均值、方差、标准差、熵、对比度和相关性等统计特性。需要注意的是,该示例代码仅仅是一个基本的框架,具体的实现方式和细节需要根据具体的应用场景进行调整和改进。
阅读全文