python手写代码实现一元线性回归

时间: 2023-11-05 12:04:33 浏览: 83
好的,我可以回答这个问题。一元线性回归是指仅有一个自变量的线性回归模型。以下是Python手写代码实现一元线性回归的示例: ``` import numpy as np # 输入数据 x = np.array([1, 2, 3, 4, 5]) y = np.array([2, 3, 4, 5, 6]) # 定义线性回归函数 def linear_regression(x, y): n = np.size(x) m_x, m_y = np.mean(x), np.mean(y) SS_xy = np.sum(y*x) - n*m_y*m_x SS_xx = np.sum(x*x) - n*m_x*m_x b_1 = SS_xy / SS_xx b_0 = m_y - b_1*m_x return(b_0, b_1) # 计算并打印出斜率和截距 b_0, b_1 = linear_regression(x, y) print('斜率:', b_1) print('截距:', b_0) ``` 这里使用了NumPy库来进行矩阵运算,首先定义了输入数据x和y,然后定义了线性回归函数。该函数计算并返回斜率和截距,最后在主函数中调用该函数并打印出结果。
相关问题

python读取excel数据实现一元线性回归

可以使用Python中的pandas和scikit-learn库来实现一元线性回归。 首先,需要安装pandas和scikit-learn库,可以使用以下命令进行安装: ``` pip install pandas scikit-learn ``` 接下来,假设我们有一个名为data.xlsx的Excel文件,其中包含两列数据x和y,我们可以使用以下代码读取数据: ```python import pandas as pd # 读取Excel文件中的数据 df = pd.read_excel('data.xlsx') # 获取x和y的值 x = df['x'].values.reshape(-1, 1) y = df['y'].values.reshape(-1, 1) ``` 接着,我们可以使用scikit-learn库中的LinearRegression模型来进行一元线性回归,代码如下: ```python from sklearn.linear_model import LinearRegression # 创建线性回归模型 model = LinearRegression() # 使用数据训练模型 model.fit(x, y) # 打印模型的截距和系数 print('Intercept:', model.intercept_) print('Coefficient:', model.coef_) ``` 最后,我们可以使用matplotlib库将数据和回归线可视化,代码如下: ```python import matplotlib.pyplot as plt # 绘制数据散点图 plt.scatter(x, y) # 绘制回归线 plt.plot(x, model.predict(x), color='red') # 显示图形 plt.show() ``` 完整代码如下: ```python import pandas as pd from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # 读取Excel文件中的数据 df = pd.read_excel('data.xlsx') # 获取x和y的值 x = df['x'].values.reshape(-1, 1) y = df['y'].values.reshape(-1, 1) # 创建线性回归模型 model = LinearRegression() # 使用数据训练模型 model.fit(x, y) # 打印模型的截距和系数 print('Intercept:', model.intercept_) print('Coefficient:', model.coef_) # 绘制数据散点图 plt.scatter(x, y) # 绘制回归线 plt.plot(x, model.predict(x), color='red') # 显示图形 plt.show() ```

用python实现一元线性回归

以下是使用Python实现一元线性回归的示例代码: ```python import numpy as np import matplotlib.pyplot as plt # 输入数据 x = np.array([1, 2, 3, 4, 5]) y = np.array([3, 5, 7, 9, 11]) # 计算均值 x_mean = np.mean(x) y_mean = np.mean(y) # 计算斜率和截距 num = 0 denom = 0 for i in range(len(x)): num += (x[i] - x_mean) * (y[i] - y_mean) denom += (x[i] - x_mean) ** 2 slope = num / denom intercept = y_mean - slope * x_mean # 输出结果 print("斜率:", slope) print("截距:", intercept) # 绘制数据和拟合直线 plt.scatter(x, y) plt.plot(x, slope * x + intercept, 'r') plt.show() ``` 输出: ``` 斜率: 2.0 截距: 1.0 ``` 绘制的图形如下所示: ![一元线性回归图](https://img-blog.csdn.net/20170627101451805?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvc2hvcnR5X2Jsb2dfY29kZS5wbmc=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/75)

相关推荐

最新推荐

recommend-type

Python实现多元线性回归方程梯度下降法与求函数极值

上述代码展示了如何绘制三维曲面图以及如何用Python实现梯度下降法求解函数极值。`f2` 函数定义了一个二次函数,`X1` 和 `X2` 分别是自变量的范围,`Y` 是根据 `f2` 计算出的因变量值。接着,代码创建了一个三维图形...
recommend-type

python实现感知机线性分类模型示例代码

以下是一个简单的Python实现感知机的伪代码: ```python class Perceptron: def __init__(self, learning_rate, max_iterations): self.w = np.random.rand(input_dim) self.b = 0 self.learning_rate = ...
recommend-type

8种用Python实现线性回归的方法对比详解

最常用的线性回归实现,提供了一整套机器学习流程,包括数据预处理、模型训练、评估等。支持正则化,适合大规模数据集和集成到机器学习管道。 7. **Lmfit**: 基于curve_fit的一个扩展库,提供更方便的参数约束和...
recommend-type

Python实现的线性回归算法示例【附csv文件下载】

以下是使用梯度下降法实现线性回归的Python代码: ```python def train(x_train, y_train, num, alpha, m, n): beta = np.ones(n) for i in range(num): h = np.dot(x_train, beta) error = h - y_train.T ...
recommend-type

Python实现分段线性插值

下面将详细讨论Python实现分段线性插值的关键知识点。 1. **数据准备**: 首先,我们需要定义一个函数`f(x)`,它是我们要插值的目标函数。在这个例子中,`f(x) = 1 / (1 + x^2)`是著名的阿贝尔函数,用于演示目的...
recommend-type

Vue实现iOS原生Picker组件:详细解析与实现思路

"Vue.js实现iOS原生Picker效果及实现思路解析" 在iOS应用中,Picker组件通常用于让用户从一系列选项中进行选择,例如日期、时间或者特定的值。Vue.js作为一个流行的前端框架,虽然原生不包含与iOS Picker完全相同的组件,但开发者可以通过自定义组件来实现类似的效果。本篇文章将详细介绍如何在Vue.js项目中创建一个模仿iOS原生Picker功能的组件,并分享实现这一功能的思路。 首先,为了创建这个组件,我们需要一个基本的DOM结构。示例代码中给出了一个基础的模板,包括一个外层容器`<div class="pd-select-item">`,以及两个列表元素`<ul class="pd-select-list">`和`<ul class="pd-select-wheel">`,分别用于显示选定项和可滚动的选择项。 ```html <template> <div class="pd-select-item"> <div class="pd-select-line"></div> <ul class="pd-select-list"> <li class="pd-select-list-item">1</li> </ul> <ul class="pd-select-wheel"> <li class="pd-select-wheel-item">1</li> </ul> </div> </template> ``` 接下来,我们定义组件的属性(props)。`data`属性是必需的,它应该是一个数组,包含了所有可供用户选择的选项。`type`属性默认为'cycle',可能用于区分不同类型的Picker组件,例如循环滚动或非循环滚动。`value`属性用于设置初始选中的值。 ```javascript props: { data: { type: Array, required: true }, type: { type: String, default: 'cycle' }, value: {} } ``` 为了实现Picker的垂直居中效果,我们需要设置CSS样式。`.pd-select-line`, `.pd-select-list` 和 `.pd-select-wheel` 都被设置为绝对定位,通过`transform: translateY(-50%)`使其在垂直方向上居中。`.pd-select-list` 使用`overflow:hidden`来隐藏超出可视区域的部分。 为了达到iOS Picker的3D滚动效果,`.pd-select-wheel` 设置了`transform-style: preserve-3d`,确保子元素在3D空间中保持其位置。`.pd-select-wheel-item` 的每个列表项都设置了`position:absolute`,并使用`backface-visibility:hidden`来优化3D变换的性能。 ```css .pd-select-line, .pd-select-list, .pd-select-wheel { position: absolute; left: 0; right: 0; top: 50%; transform: translateY(-50%); } .pd-select-list { overflow: hidden; } .pd-select-wheel { transform-style: preserve-3d; height: 30px; } .pd-select-wheel-item { white-space: nowrap; text-overflow: ellipsis; backface-visibility: hidden; position: absolute; top: 0px; width: 100%; overflow: hidden; } ``` 最后,为了使组件能够响应用户的滚动操作,我们需要监听触摸事件,更新选中项,并可能还需要处理滚动动画。这通常涉及到计算滚动位置,映射到数据数组,以及根据滚动方向调整可见项的位置。 总结来说,实现Vue.js中的iOS原生Picker效果,需要构建一个包含可滚动列表的自定义组件,通过CSS样式实现3D滚动效果,并通过JavaScript处理触摸事件来模拟Picker的行为。通过这种方式,开发者可以在Vue.js项目中创建出与iOS原生界面风格一致的用户交互体验。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【广度优先搜索】:Python面试中的系统化思维展现

![【广度优先搜索】:Python面试中的系统化思维展现](https://media.geeksforgeeks.org/wp-content/cdn-uploads/20200611200432/Top-10-System-Design-Interview-Questions-and-Answers.png) # 1. 广度优先搜索(BFS)算法概述 广度优先搜索(Breadth-First Search, BFS)算法是图论中的一种基本算法,广泛应用于计算机科学和工程领域。它是对树或图进行遍历的一种方法,按照距离起点的远近逐层进行搜索,直到找到目标节点或遍历完所有可到达的节点。这种算法
recommend-type

nginx ubuntu离线安装

Nginx是一款开源的高性能Web服务器和反向代理服务器,常用于Linux系统,如Ubuntu。离线安装通常指在没有网络连接的情况下本地获取并配置软件包。以下是Nginx在Ubuntu上离线安装的基本步骤: 1. **下载Nginx包**: - 首先,你需要从Nginx官方网站下载适用于Ubuntu的二进制包。访问 https://nginx.org/en/download.html ,选择对应版本的`nginx`文件,比如`nginxxx.x.tar.gz`,将其保存到你的离线环境中。 2. **解压并移动文件**: 使用`tar`命令解压缩下载的文件: ```
recommend-type

Arduino蓝牙小车:参数调试与功能控制

本资源是一份基于Arduino Mega2560主控的蓝牙遥控小车程序代码,适用于Android设备通过蓝牙进行操控。该程序允许车辆实现运动、显示和测温等多种功能,具有较高的灵活性和实用性。 1. **蓝牙通信与模块操作** 在程序开始时,开发者提醒用户在上传代码前需将蓝牙模块的RX接口暂时拔掉,上传成功后再恢复连接。这可能是因为在调试过程中,需要确保串口通信的纯净性。程序通过Serial.begin()函数设置串口波特率为9600,这是常见的蓝牙通信速率,适合于手机等设备连接。 2. **电机控制参数调整** 代码中提到的"偏转角度需要根据场地不同进行调参数",表明程序设计为支持自定义参数,通过宏变量的形式,用户可以根据实际需求对小车的转向灵敏度进行个性化设置。例如,`#define left_forward_PIN4` 和 `#define right_forward_PIN2` 定义了左右轮的前进控制引脚,这些引脚的输出值范围是1-255,允许通过编程精确控制轮速。 3. **行驶方向控制** 小车的行驶方向通过改变特定引脚的高低电平来实现。例如,`void left_forward_PIN4` 和 `void left_back_PIN5` 分别控制左轮前进和后退,用户可以通过赋予高或低电平来指示小车的行驶方向。同时,右轮的控制方式类似。 4. **多种移动模式** 除了基本的前进和后退,程序还提供了原地左转、原地右转、右前、左前、左后和右后的控制函数,如`void turnLeftOrigin()` 等,增强了小车的机动性和操作多样性。 5. **主函数和循环结构** 主函数`void setup()`用于初始化硬件,包括串口通信和引脚配置。而`void loop()`则是一个无限循环,通过`void reve()`函数不断接收并处理蓝牙发送的指令,保持小车持续响应用户的控制命令。 6. **数据接收与解析** `void reve()`函数通过`Serial.parseInt()`读取蓝牙发送的数字值(7在示例中被提及),然后根据接收到的指令执行相应的移动命令,体现了程序的核心逻辑部分。 总结来说,这份蓝牙小车程序代码为开发人员提供了一个基础平台,通过调整参数和编写特定的控制函数,能够实现不同场景下的小车控制,具有较强的通用性和可扩展性。对于学习和实践Arduino与蓝牙通信的开发者来说,这是一个很好的学习和实践案例。