from pyb import UART import sensor, image, time, os, tf, pyb sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.set_windowing((160,160)) sensor.skip_frames(time=2000) sensor.set_contrast(3) uart = UART(3, 115200) clock = time.clock() flag = 0 while True: clock.tick() img = sensor.snapshot().binary([(0,64)]) img.lens_corr(1.8) for obj in tf.classify("shuzishibie.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.6, y_overlap=0.5): output = obj.output() number = output.index(max(output)) confidence = int(max(output) * 100) if confidence > 75: uart.write(str(number)) print(str(number)) else: uart.write('0') print('0') pyb.delay(10) # 添加延时,单位为毫秒在这里面添加无法识别红色的代码

时间: 2024-04-15 15:30:16 浏览: 21
在这个代码中,您可以添加以下代码来识别红色物体: ```python red_threshold = (30, 100, 15, 127, 15, 127) # 设置红色阈值 for blob in img.find_blobs([red_threshold], pixels_threshold=200, area_threshold=200): # 在此处添加您的处理代码,例如打印坐标或执行其他操作 pass ``` 您可以根据需要调整阈值和其他参数。这段代码使用`find_blobs`函数来查找图像中符合阈值的红色物体。您可以在找到的物体上进行进一步的处理,例如打印坐标或执行其他操作。
相关问题

import sensor, image, time, os, tf, pyb from pyb import UART sensor.reset() # Reset and initialize the sensor. sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE) sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240) sensor.set_windowing((240, 240)) # Set 240x240 window. sensor.skip_frames(time=2000) # Let the camera adjust. uart = UART(3, 15200) clock = time.clock() while(True): clock.tick() img = sensor.snapshot().binary([(0,64)]) img.lens_corr(1.8) for obj in tf.classify("shuzishibie.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0): output = obj.output() number = output.index(max(output)) if number==1: uart.write('1') print(number) elif number==2: uart.write('2') print(number) elif number==3: uart.write('3') print(number) elif number==4: uart.write('4') print(number) elif number==5: uart.write('5') print(number) elif number==6: uart.write('6') print(number) elif number==7: uart.write('7') print(number) else: uart.write('8') print(number)

这段代码是用于图像识别的,它使用了OpenMV摄像头和TensorFlow Lite模型。代码的功能是从摄像头获取图像并将其传递给TensorFlow模型进行物体识别。识别结果通过UART发送给外部设备。 在代码中,首先进行了一些初始化设置,然后进入一个无限循环中。每次循环中,通过`sensor.snapshot()`获取图像,并对图像进行二值化处理。然后使用TensorFlow模型对图像进行分类,得到一个输出结果。根据输出结果的最大值,判断识别结果是哪个数字,然后通过UART发送相应的数字给外部设备。 请注意,这段代码中有一些硬件相关的设置,如UART通信和摄像头设置。如果你想运行这段代码,需要确保你的硬件环境与代码中的设置相匹配,并且已经安装了相关的库和模型文件。

name 'pyb' isn't defined

抱歉,我之前给出的代码中有个错误。在OpenMV中,用于串口通信的库是`uart`而不是`pyb`。请修改代码如下: ```python import sensor import image import time import uart # 配置摄像头 sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time=2000) # 配置串口 uart.init(baudrate=115200) # 根据实际情况选择波特率 while True: # 获取图像 img = sensor.snapshot() # 处理图像,进行数字识别 # ... # 将识别结果发送至串口 uart.write(str(number)) time.sleep(100) ``` 请注意,上述代码中的`uart.init(baudrate=115200)`表示初始化串口通信,并设置波特率为115200。您需要根据实际情况修改波特率。 希望这次能帮到您!如有任何问题,请随时向我提问。

相关推荐

最新推荐

recommend-type

智慧物流医药物流落地解决方案qytp.pptx

智慧物流医药物流落地解决方案qytp.pptx
recommend-type

JAVA物业管理系统设计与实现.zip

JAVA物业管理系统设计与实现
recommend-type

基于java的聊天系统的设计于实现.zip

基于java的聊天系统的设计于实现
recommend-type

Vue数字孪生可视化建模系统源码.zip

vueVue数字孪生可视化建模系统源码.zip vueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zipvueVue数字孪生可视化建模系统源码.zip
recommend-type

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip

基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip基于UCI Heart Disease数据集的心脏病分析python源码+数据集+演示ppt+详细资料.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。