from pyb import UART import sensor, image, time, os, tf, pyb sensor.reset() sensor.set_pixformat(sensor.GRAYSCALE) sensor.set_framesize(sensor.QVGA) sensor.set_windowing((160,160)) sensor.skip_frames(time=2000) sensor.set_contrast(3) uart = UART(3, 115200) clock = time.clock() flag = 0 while True: clock.tick() img = sensor.snapshot().binary([(0,64)]) img.lens_corr(1.8) for obj in tf.classify("shuzishibie.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.6, y_overlap=0.5): output = obj.output() number = output.index(max(output)) confidence = int(max(output) * 100) if confidence > 75: uart.write(str(number)) print(str(number)) else: uart.write('0') print('0') pyb.delay(10) # 添加延时,单位为毫秒在这里面添加无法识别红色的代码
时间: 2024-04-15 19:30:16 浏览: 157
PYB.rar_Winpy.txt_delphi TXT_十六进制_拼音输入法
在这个代码中,您可以添加以下代码来识别红色物体:
```python
red_threshold = (30, 100, 15, 127, 15, 127) # 设置红色阈值
for blob in img.find_blobs([red_threshold], pixels_threshold=200, area_threshold=200):
# 在此处添加您的处理代码,例如打印坐标或执行其他操作
pass
```
您可以根据需要调整阈值和其他参数。这段代码使用`find_blobs`函数来查找图像中符合阈值的红色物体。您可以在找到的物体上进行进一步的处理,例如打印坐标或执行其他操作。
阅读全文