代码生成,python基于cnn和mfcc方法对CASIA的语音情感数据库的语音进行区分男女声音并进行情感分析
时间: 2024-06-08 11:10:59 浏览: 170
语音情感识别程序.rar_matlab情感识别_mfcc情感识别_情感 matlab_语音情感识别
5星 · 资源好评率100%
以下是基于CNN和MFCC方法对CASIA语音情感数据库进行性别识别和情感分析的Python代码示例:
首先,我们需要导入所需的库和数据集:
```python
import os
import numpy as np
import pandas as pd
import librosa
import librosa.display
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.utils import to_categorical
# 设置数据集路径
data_path = "CASIA-3/CASIA-3/voice"
emotions = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
```
然后,我们可以定义一些辅助函数来处理数据。下面是一个函数,它将音频文件加载为MFCC(Mel频率倒谱系数)特征:
```python
def extract_mfcc(file_path):
audio, sr = librosa.load(file_path, res_type="kaiser_fast") # 加载音频文件
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=20) # 提取MFCC特征
return mfccs
```
接下来,我们可以定义一个函数来加载数据集并将其转换为MFCC特征。我们还将为每个样本标签进行编码:
```python
def load_data(test_size=0.2):
X = []
y = []
for emotion in emotions:
emotion_path = os.path.join(data_path, emotion)
for file in os.listdir(emotion_path):
file_path = os.path.join(emotion_path, file)
mfccs = extract_mfcc(file_path)
X.append(mfccs)
y.append(emotion)
X = np.array(X)
y = np.array(y)
le = LabelEncoder()
y = to_categorical(le.fit_transform(y))
return train_test_split(X, y, test_size=test_size, random_state=42)
```
现在,我们可以使用卷积神经网络(CNN)对MFCC特征进行分类。下面是一个简单的CNN模型:
```python
def create_model(input_shape, num_classes):
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
return model
```
最后,我们可以使用以下代码来训练模型并进行预测:
```python
X_train, X_test, y_train, y_test = load_data() # 加载数据集
input_shape = (X_train.shape[1], X_train.shape[2], 1) # 定义输入形状
num_classes = y_train.shape[1] # 定义类别数
# 创建并编译模型
model = create_model(input_shape, num_classes)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, batch_size=32, epochs=50, validation_data=(X_test, y_test))
# 预测新样本
new_sample = extract_mfcc("test_sample.wav")
new_sample = np.expand_dims(new_sample, axis=-1)
prediction = model.predict(new_sample)
```
希望这个代码示例能帮助你开始使用CNN和MFCC方法对语音情感数据库进行性别识别和情感分析!
阅读全文