resnet50的pytorch工程下载
时间: 2023-08-08 21:10:25 浏览: 168
您可以在PyTorch官方GitHub仓库中找到ResNet50的实现代码。以下是下载链接:
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
您可以通过该链接下载resnet.py文件,该文件包含了ResNet50的实现代码。您可以使用该文件来构建和训练ResNet50模型。如果您需要使用已经训练好的ResNet50模型,可以使用PyTorch提供的torchvision.models模块中的预训练模型,如下所示:
```
import torchvision.models as models
resnet50 = models.resnet50(pretrained=True)
```
这将下载已经预训练好的ResNet50模型并加载到resnet50变量中。
相关问题
可以提供pytorch版本的resnet50的工程吗?
当然可以,以下是使用PyTorch实现的ResNet50模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet50():
return ResNet(Bottleneck, [3,4,6,3])
```
这个代码实现了ResNet50模型的结构,可以用于图像分类等任务中。如果需要使用,可以按照如下方式进行调用:
```python
net = ResNet50()
y = net(x)
```
其中,`x`是输入的数据,`y`是经过模型处理后的结果。需要注意的是,这里的输入数据的通道数应该是3,因为ResNet50模型是针对RGB图像的。如果你要使用其他通道数的数据,需要进行相应的修改。
resnet50工程下载地址
你可以通过以下地址下载resnet50的PyTorch工程:
https://github.com/pytorch/vision/tree/master/torchvision/models
在这个工程中,resnet50的定义位于文件resnet.py中。如果需要使用预训练好的resnet50模型,可以通过以下代码进行下载:
```
import torch.utils.model_zoo as model_zoo
model_urls = {
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
}
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
...
...
if pretrained:
self.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
```
其中,model_zoo.load_url函数将自动下载预训练模型并加载到网络中。
阅读全文