python 最优分箱代码
时间: 2023-07-09 11:30:49 浏览: 226
最优分箱1
好的,以下是一个基于CART算法实现的Python最优分箱代码,可以用于对连续变量进行分箱操作:
```python
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeRegressor
def binning_continuous_var(data, target, min_samples_leaf=50, max_bins=10, return_bins=False):
data = pd.concat([data, target], axis=1)
cont_cols = data.select_dtypes(include=[np.number]).columns.tolist()
for col in cont_cols:
binned_col, bins = bin_continuous_var(data, col, target, min_samples_leaf, max_bins)
data[col] = binned_col
if return_bins:
return data, bins
else:
return data
def bin_continuous_var(data, col, target, min_samples_leaf, max_bins):
data_range = data[col].max() - data[col].min()
if data_range == 0:
return data[col], []
else:
tree_model = DecisionTreeRegressor(
criterion='mse',
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_bins,
random_state=42
)
tree_model.fit(data[col].to_frame(), target)
n_leaves = tree_model.get_n_leaves()
while n_leaves >= max_bins:
max_bins -= 1
tree_model = DecisionTreeRegressor(
criterion='mse',
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_bins,
random_state=42
)
tree_model.fit(data[col].to_frame(), target)
n_leaves = tree_model.get_n_leaves()
leaves_range = [(tree_model.tree_.threshold[i - 1], tree_model.tree_.threshold[i]) for i in
np.where(tree_model.tree_.children_left == -1)[0]]
bins = [data[col].min()] + [i[1] for i in leaves_range[:-1]] + [data[col].max()]
binned_col = np.digitize(data[col], bins)
binned_col = pd.Series(binned_col, index=data.index)
binned_col = binned_col.map(lambda x: np.round(np.mean(data[target.name][binned_col == x]), 4))
return binned_col, bins
```
该代码中,`binning_continuous_var`函数是用于执行最优分箱的主函数,输入参数包括待分箱的数据、目标变量、最小样本数、最大分箱数和是否返回分箱边界值等。该函数会循环处理每个连续变量,并调用`bin_continuous_var`函数对每个连续变量进行分箱操作,最后将分箱结果更新到数据集中。如果需要返回分箱结果,则返回数据集和分箱边界值列表。
`bin_continuous_var`函数是用于执行单个连续变量的分箱操作,输入参数包括待分箱的数据、连续变量的列名、目标变量、最小样本数和最大分箱数等。该函数会使用CART算法拟合一个回归树模型,并根据最大叶节点数目的限制对树进行剪枝操作,从而得到最优的分箱边界值。最后,该函数会将数据集中的连续变量转换为对应的分箱结果,并返回分箱结果和分箱边界值列表。
使用该代码,您只需要将待分箱的数据和目标变量传入`binning_continuous_var`函数即可,例如:
```python
# 生成测试数据
data = pd.DataFrame({
'col1': np.random.rand(1000),
'col2': np.random.rand(1000),
'col3': np.random.rand(1000),
'target': np.random.randint(0, 2, 1000)
})
# 执行最优分箱操作
data_binned = binning_continuous_var(data.drop('target', axis=1), data['target'], min_samples_leaf=50, max_bins=10, return_bins=False)
```
以上就是一个基于CART算法实现的Python最优分箱代码,希望可以对您有所帮助。
阅读全文