神经 模糊 模型预测控制及其matlab实现pdf
时间: 2023-05-08 07:01:05 浏览: 398
神经模糊模型预测控制(Neuro-Fuzzy Model Predictive Control,NF-MPC)是一种将神经网络和模糊系统相结合的预测控制方法。其基本思想是通过神经网络对系统进行建模和预测,通过模糊控制实现对系统的控制。
与传统的模型预测控制相比,NF-MPC具有以下优势:(1)能够处理非线性、时变系统;(2)具有自适应性和自学习能力;(3)系统辨识和控制一体化。
该方法的matlab实现需要先进行系统建模和训练神经网络。其实现步骤如下:(1)建立神经网络模型并确定网络结构和参数;(2)输入训练数据集进行训练;(3)将训练后的神经网络与模糊控制器结合,构建NF-MPC系统;(4)在仿真平台上进行NF-MPC的检验和优化,获得最优控制效果。
该方法的应用范围广泛,如化工、食品、制药、航天等领域,拥有较高的实用价值和研究意义。
相关问题
神经模糊预测控制及其matlab实现 pdf
神经模糊预测控制是一种新型的控制方法,利用神经网络和模糊逻辑来实现系统的非线性建模和预测控制。它能够应对复杂系统和控制问题,在工业、汽车、航天等领域有着广泛的应用前景。
对于神经模糊预测控制的MATLAB实现,可以通过搭建神经网络和模糊逻辑控制器来完成。首先需要利用MATLAB工具箱或者自行编程构建神经网络,用来对系统进行建模和预测。同时,还需要设计模糊逻辑控制器,根据系统的特性和需求来设定模糊规则和隶属函数,以实现对系统的精确控制。
在MATLAB中,可以利用现成的神经网络工具箱来构建神经网络模型,如feedforwardnet或者narnet等。同时,也可以使用fuzzy logic toolbox来设计模糊逻辑控制器,包括隶属函数的设置、模糊规则的定义以及输出的解模糊过程。
通过将神经网络模型和模糊逻辑控制器整合在一起,就可以实现神经模糊预测控制的MATLAB实现。在实际的工程应用中,可以根据具体的系统和控制需求来调整参数和优化控制器,以获得更好的控制效果。
总而言之,神经模糊预测控制在MATLAB中的实现需要利用神经网络和模糊逻辑控制器,并根据具体的系统进行调整和优化,以实现对系统的精确控制。
阅读全文