spam数据集逻辑回归模型代码
时间: 2024-05-05 08:18:33 浏览: 75
好的,以下是spam数据集逻辑回归模型的代码:
```
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据集
data = pd.read_csv('spam.csv')
X = data.drop('target', axis=1)
y = data['target']
# 将数据集分成训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 建立逻辑回归模型并训练
model = LogisticRegression()
model.fit(X_train, y_train)
# 在测试集上进行预测并计算准确率
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('准确率:', accuracy)
```
希望以上代码能够帮到你。接下来,请问你想问什么问题?
相关问题
用keras完成逻辑回归的电子邮件分类:使用逻辑回归模型对电子邮件进行分类,判断它们是否为垃圾邮件的代码
下面是使用Keras完成逻辑回归的电子邮件分类的代码示例:
```python
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
# 读取数据集
data = pd.read_csv('spam.csv', encoding='latin-1')
# 数据预处理
data['label'] = np.where(data['v1'] == 'spam', 1, 0)
y = data['label'].values
X = data['v2'].values
# 将文本转换为词向量
from keras.preprocessing.text import Tokenizer
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X)
X = tokenizer.texts_to_matrix(X, mode='tfidf')
# 划分训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 构建模型
model = Sequential()
model.add(Dense(1, input_dim=X.shape[1], activation='sigmoid'))
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy:', accuracy)
```
在以上代码中,我们首先使用Pandas库读取数据集,并将标签(垃圾邮件或非垃圾邮件)转换为0或1的二进制编码。然后,我们使用Keras的文本预处理工具Tokenizer将电子邮件转换为词向量,并使用train_test_split函数将数据集划分为训练集和测试集。接下来,我们使用Sequential模型和Dense层构建逻辑回归模型,使用Adam优化器和二元交叉熵损失函数编译模型。最后,我们使用fit方法训练模型,并使用evaluate方法评估模型的表现。
注意:上述代码仅供参考,实际应用中需要根据数据集的特点进行适当的调整和改进。
spark作业,请使用垃圾邮件数据集df_mail,将label列转换为数值类型,使用逻辑回归或决策树模型,将分词,TF-IDF,模型训练装配称为流水线,并评估模型的准确率。然后使用一段话作为测试数据,通过模型预测这段话的内容是否为垃圾邮件。
好的,下面是实现步骤:
1.导入相关库和数据集
```python
from pyspark.ml.feature import Tokenizer, StopWordsRemover, CountVectorizer, IDF, StringIndexer
from pyspark.ml.classification import LogisticRegression, DecisionTreeClassifier
from pyspark.ml import Pipeline
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.sql.functions import col
df_mail = spark.read.format("csv").option("header", "true").load("df_mail.csv")
```
2.将label列转换为数值类型
```python
indexer = StringIndexer(inputCol="label", outputCol="labelIndex")
df_mail = indexer.fit(df_mail).transform(df_mail)
```
3.将分词,TF-IDF,模型训练装配称为流水线
```python
tokenizer = Tokenizer(inputCol="text", outputCol="words")
stopwords = StopWordsRemover(inputCol="words", outputCol="filtered")
cv = CountVectorizer(inputCol="filtered", outputCol="rawFeatures")
idf = IDF(inputCol="rawFeatures", outputCol="features", minDocFreq=5)
lr = LogisticRegression(featuresCol="features", labelCol="labelIndex", maxIter=10)
pipeline = Pipeline(stages=[tokenizer, stopwords, cv, idf, lr])
```
4.进行模型训练和评估
```python
(trainingData, testData) = df_mail.randomSplit([0.7, 0.3], seed=100)
model = pipeline.fit(trainingData)
predictions = model.transform(testData)
evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")
accuracy = evaluator.evaluate(predictions)
print("Accuracy:", accuracy)
```
5.使用测试数据进行预测
```python
test_data = [("Guaranteed to Lose 10-20 pounds in 30 days", )]
test_df = spark.createDataFrame(test_data, ["text"])
result = model.transform(test_df).select("text", "prediction").collect()[0]
print("Test Data:", result[0])
print("Prediction:", "Spam" if result[1] == 1.0 else "Not Spam")
```
最后,您需要将以上代码整合在一起并执行。注意,您需要将数据集文件路径替换为实际路径。
阅读全文