MOEAD算法MATLAB

时间: 2023-08-18 22:14:15 浏览: 33
MOEAD算法是一种基于分解的多目标优化算法,最早由Qingfu Zhang等人在2007年提出。该算法的主要思想是将一个多目标优化问题分解为若干个标量优化子问题,并同时对它们进行优化。每个子问题只利用相邻的几个子问题的信息进行优化,使得MOEAD算法在每一代的计算复杂度都低于其他算法,如MOGLS和非支配排序遗传算法II(NSGA-II)。\[2\] MOEAD算法的MATLAB代码可以在GitHub上找到,可以通过下载免费源代码来使用。代码的整体结构与原文中给出的MOEA/D框架基本一致。在代码中使用了较多的结构体,这些结构体的组成在开头处有详细的解释。如果对MOEA/D算法的理论学习有需要,可以参考原文《MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition》。\[3\] 需要注意的是,尽管MOEAD算法的代码对于读者进行原论文算法流程的理解以及与NSGA-II算法优化结果的对比非常友好,但是该代码的二目标MOP优化结果可能略逊于上文中的代码优化结果,并且算法的运行时间没有得到特别大的改善。因此,在使用该代码时需要注意这些方面的特点。\[1\] #### 引用[.reference_title] - *1* *3* [进化计算(九)——MOEA/D代码实现及中文详解(Matlab)](https://blog.csdn.net/qq_43472569/article/details/121457243)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [多目标优化--MOEAD算法笔记](https://blog.csdn.net/qq_36317312/article/details/107245961)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

相关推荐

MOEA/D(Multi-objective Evolutionary Algorithm based on Decomposition)算法是一种多目标优化算法,它将多目标问题转化为一系列单目标子问题,并通过分解技术进行求解。MOEA/D算法的优势和劣势如下: 优势: 1. 高效性:MOEA/D算法采用并行计算策略,可以同时优化多个子问题,提高了求解效率。 2. 收敛性:MOEA/D算法采用目标分解方法,将多目标问题转化为多个单目标子问题,通过不断迭代逼近真实Pareto前沿。 3. 灵活性:MOEA/D算法允许用户自定义权重向量,可以根据具体问题的需求进行调整,灵活适应不同的多目标优化任务。 4. 鲁棒性:MOEA/D算法通过维护一个外部存档来保存种群的非支配解,避免了个体的意外消失,提高了算法的鲁棒性。 劣势: 1. 解决局部最优:MOEA/D算法依赖于分解技术,将多目标问题转化为单目标子问题,但这种分解可能导致局部最优解的出现,无法获得全局最优解。 2. 参数设置困难:MOEA/D算法需要设置一些参数,如权重向量、邻居数量等,参数的选择对算法性能有较大影响,需要经验和实验来确定最佳参数组合。 3. 处理非凸问题困难:MOEA/D算法在处理非凸、非连续的多目标优化问题时,可能存在困难,因为分解技术对问题的连续性和凸性有一定要求。 总的来说,MOEA/D算法具有高效、收敛、灵活和鲁棒的特点,但在解决局部最优、参数设置和处理非凸问题等方面还存在一些挑战。

最新推荐

基2FFT算法的MATLAB实现

基2FFT算法的MATLAB实现,自己编写的代码与MATLAB函数fft的仿真结果进行对比,编写的代码可以实现fft功能。

census算法matlab程序

census算法matlab程序,双目立体匹配利用汉明氏距离计算匹配窗口,整体算法光敏性较好

霍纳算法matlab编程

霍纳算法matlab编程,对方程组的算法,代码,和方程都在word中,有兴趣的同学可以看看

Kruskal算法的MATLAB实现

Kruskal算法的MATLAB实现,输入参数d是原图的权值矩阵;输出参数T是最小生成树的顶点组成的矩阵,每条边的两个顶点放在同一列中;a是最小生成树的总权值

Matlab数学建模算法全收录.pdf

数学建模算法,包括数学规划,图论,排队论,层次分析,多元统计分析方法,微分方程,模糊数学,灰色模型,神经网络,现代算法,非常全的数学建模资料,还包含相应的matlab程序,全本。

超声波雷达驱动(Elmos524.03&Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�