SE注意力机制的代码
时间: 2024-08-14 21:06:21 浏览: 30
SE注意力机制(Squeeze-Excitation,简称SE)是一种用于提升卷积神经网络(CNN)性能的技术,它通过学习输入特征图的全局依赖并调整每个通道的重要性。在编码阶段,SE层会压缩特征图到一个一维向量,然后通过两个全连接层分别计算全局平均值(squeeze)和自适应加权(excitation)。下面是一个简单的Python(Keras库)实现SE注意力块的例子:
```python
from keras.layers import Layer
import tensorflow as tf
class SqueezeExcite(Layer):
def __init__(self, ratio=16, **kwargs):
self.ratio = ratio
super(SqueezeExcite, self).__init__(**kwargs)
def build(self, input_shape):
self.channel_axis = -1
if input_shape[self.channel_axis] is None:
raise ValueError('The channel dimension of the inputs '
'should be defined. Found `None`.')
num_channels = int(input_shape[self.channel_axis])
self.global_avg_pool = GlobalAveragePooling2D(data_format='channels_last')
self.dense_1 = Dense(num_channels // self.ratio, activation='relu', name='se_reduce')
self.dense_2 = Dense(num_channels, activation='sigmoid', name='se_expand')
def call(self, inputs):
x = self.global_avg_pool(inputs)
x = self.dense_1(x)
x = self.dense_2(x)
scale = tf.expand_dims(x, axis=self.channel_axis)
return inputs * scale
# 使用示例:
input_tensor = Input(shape=(height, width, channels))
x = Conv2D(...)(input_tensor)
x = SqueezeExcite()(x)
```
在这个例子中,`ratio`参数决定了压缩后的通道数,`GlobalAveragePooling2D`用于提取特征的全局信息,随后经过两层全连接层处理,最后再将结果扩展回原始通道维度,应用于输入特征。
阅读全文