UNet3+ pytorch实现

时间: 2023-07-13 07:34:12 浏览: 130
以下是一个简单的UNet 3+的PyTorch实现,仅供参考: ```python import torch import torch.nn as nn import torch.nn.functional as F class DoubleConv(nn.Module): def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): def __init__(self, in_channels, out_channels, bilinear=True): super().__init__() if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_channels // 2, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class AttentionBlock(nn.Module): def __init__(self, F_g, F_l, F_int): super(AttentionBlock, self).__init__() self.W_g = nn.Sequential( nn.Conv2d(F_g, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.W_x = nn.Sequential( nn.Conv2d(F_l, F_int, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(F_int) ) self.psi = nn.Sequential( nn.Conv2d(F_int, 1, kernel_size=1, stride=1, padding=0, bias=True), nn.BatchNorm2d(1), nn.Sigmoid() ) self.relu = nn.ReLU(inplace=True) def forward(self, g, x): g1 = self.W_g(g) x1 = self.W_x(x) psi = self.relu(g1 + x1) psi = self.psi(psi) return x * psi class UNet3Plus(nn.Module): def __init__(self, in_channels=3, out_channels=1, bilinear=True): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.bilinear = bilinear self.down1 = Down(in_channels, 32) self.att1 = AttentionBlock(F_g=32, F_l=32, F_int=16) self.down2 = Down(32, 64) self.att2 = AttentionBlock(F_g=64, F_l=64, F_int=32) self.down3 = Down(64, 128) self.att3 = AttentionBlock(F_g=128, F_l=128, F_int=64) self.down4 = Down(128, 256) self.att4 = AttentionBlock(F_g=256, F_l=256, F_int=128) self.center = DoubleConv(256, 512) self.att5 = AttentionBlock(F_g=512, F_l=512, F_int=256) self.up4 = Up(512, 256, self.bilinear) self.att6 = AttentionBlock(F_g=256, F_l=256, F_int=128) self.up3 = Up(256, 128, self.bilinear) self.att7 = AttentionBlock(F_g=128, F_l=128, F_int=64) self.up2 = Up(128, 64, self.bilinear) self.att8 = AttentionBlock(F_g=64, F_l=64, F_int=32) self.up1 = Up(64, 32, self.bilinear) self.outc = nn.Conv2d(32, out_channels, kernel_size=1) def forward(self, x): x1 = self.down1(x) x2 = self.down2(x1) x3 = self.down3(x2) x4 = self.down4(x3) center = self.center(x4) center = self.att5(g=center, x=center) x4 = self.att4(g=center, x=x4) x3 = self.att3(g=x4, x=x3) x2 = self.att2(g=x3, x=x2) x1 = self.att1(g=x2, x=x1) x = self.up4(center, x4) x = self.att6(g=x, x=center) x = self.up3(x, x3) x = self.att7(g=x, x=x3) x = self.up2(x, x2) x = self.att8(g=x, x=x2) x = self.up1(x, x1) logits = self.outc(x) return logits ``` 在这个实现中,我们首先定义了一个双卷积块(DoubleConv)、下采样块(Down)和上采样块(Up)。然后定义了一个注意力块(AttentionBlock)来实现UNet 3+中的跨通道注意力机制。最后,我们将所有块组合在一起以定义UNet 3+网络。

相关推荐

最新推荐

recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

基于pytorch的UNet分割网络demo实现,及训练自己的数据集。包括对相关报错的分析。收集了几个比较好的前辈的网址。
recommend-type

使用pytorch实现论文中的unet网络

Unet网络设计的步骤: 1. 设计Unet网络工厂模式 2. 设计编解码结构 3. 设计卷积模块 4. unet实例模块 Unet网络最重要的特征: 1. 编解码结构。 2. 解码结构,比FCN更加完善,采用连接方式。 3. 本质是一个框架,编码...
recommend-type

什么是mysql安装配置教程以及学习mysql安装配置教程的意义

mysql安装配置教程
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平