def compute_mAP(trn_binary, tst_binary, trn_label, tst_label): """ compute mAP by searching testset from trainset https://github.com/flyingpot/pytorch_deephash """ for x in trn_binary, tst_binary, trn_label, tst_label: x.long() AP = [] Ns = torch.arange(1, trn_binary.size(0) + 1) Ntest = torch.arange(1, tst_binary.size(0) + 1) print("trn_binary.size(0):",trn_binary.size(0)) print("tst_binary.size(0):", tst_binary.size(0)) print("Ns:",Ns) print("Ns:", Ntest) # print("Ns(train):",Ns) for i in range(tst_binary.size(0)): query_label, query_binary = tst_label[i], tst_binary[i] # 把测试图像编码和标签赋值给->查询图像编码和标签 _, query_result = torch.sum((query_binary != trn_binary).long(), dim=1).sort() # 判断查询图像编码是否等于训练图像编码,相等的总和,并排序。 print("查询标签-----------------------------------------------------:",query_label) print("查询二进制:", query_binary) print(len(query_binary)) print("查询结果:",query_result) print("是否相等:",query_binary != trn_binary) print("查询结果1:", torch.sum((query_binary != trn_binary).long(), dim=1)) print("查询结果2:",torch.sum((query_binary != trn_binary).long(), dim=1).sort()) correct = (query_label == trn_label[query_result]).float() # 正确匹配的二进制编码个数 print("trn_label[query_result]:",trn_label[query_result]) num_ones = torch.sum(correct == 1) print("查询正确的个数:",num_ones) print("查询正确:",correct) P = torch.cumsum(correct, dim=0) / Ns print("torch.cumsum(correct, dim=0)",torch.cumsum(correct, dim=0)) print("查询正确/Ns",torch.Tensor(P)) #每个位置的精度 P AP.append(torch.sum(P * correct) / torch.sum(correct)) # print("---:",AP) acc = num_ones / tst_binary.size(0) print("ACC================================== ", acc) mAP = torch.mean(torch.Tensor(AP)) return mAP 请问怎么将这段代码改成EER评估指标的代码
时间: 2024-04-11 12:33:12 浏览: 126
要将这段代码改为计算EER评估指标的代码,你需要进行以下修改:
1. 引入所需的库:添加 `from sklearn.metrics import roc_curve, auc` 来计算ROC曲线和AUC。
2. 修改函数定义:将函数名改为 `calculate_eer`,并将参数列表修改为 `y_true, y_scores`。
3. 移除不必要的部分:删除不相关的代码,如循环和打印语句。
4. 调整计算过程:
```python
from sklearn.metrics import roc_curve
from scipy.optimize import brentq
from scipy.interpolate import interp1d
def calculate_eer(y_true, y_scores):
fpr, tpr, thresholds = roc_curve(y_true, y_scores, pos_label=1)
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
return eer
# 假设y_true为真实标签(0或1),y_scores为预测得分(概率或其他连续值)
eer = calculate_eer(y_true, y_scores)
print("Equal Error Rate (EER):", eer)
```
上述修改后的代码将计算给定真实标签和预测得分的等误差率(EER)。请确保提供正确的 `y_true` 和 `y_scores` 参数以获得正确的结果。
阅读全文