linux内核怎么修改屏幕旋转方向_Linux内核驱动怎么写

时间: 2024-02-28 14:56:40 浏览: 37
在Linux中,可以通过修改内核的驱动程序来实现屏幕旋转方向的修改。具体步骤如下: 1. 首先需要确定屏幕的旋转方向,以及屏幕使用的显示控制器。根据不同的显示控制器,可能需要修改不同的驱动程序。 2. 打开Linux内核源码,在驱动程序的目录下找到相关的文件,例如对于使用DRM进行显示的情况,可以在`drivers/gpu/drm`目录下找到相关的驱动程序。 3. 找到需要修改的驱动程序文件,例如`drm_panel.c`,在该文件中查找与屏幕旋转相关的代码。 4. 根据需要修改的旋转方向,修改相关的代码。例如,如果需要将屏幕旋转90度,可以修改代码如下: ```c static const struct drm_display_mode panel_mode = { .clock = 74250, .hdisplay = 1080, .hsync_start = 1080 + 88, .hsync_end = 1080 + 88 + 44, .htotal = 1080 + 88 + 44 + 148, .vdisplay = 1920, .vsync_start = 1920 + 4, .vsync_end = 1920 + 4 + 5, .vtotal = 1920 + 4 + 5 + 36, .vrefresh = 60, .flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC, }; ``` 可以看到,需要修改的是`hdisplay`和`vdisplay`,将它们分别改为1920和1080即可实现屏幕旋转90度。 5. 修改完成后,重新编译内核,并加载新的内核模块即可。 关于Linux内核驱动的编写,可以参考以下步骤: 1. 首先需要确定需要编写的驱动类型,例如字符设备驱动、块设备驱动、网络设备驱动等。 2. 打开Linux内核源码,在相关的驱动程序目录下创建一个新的文件,例如`my_driver.c`。 3. 在文件中定义驱动程序的数据结构和相关的操作函数,例如: ```c struct my_driver_data { struct device *dev; int data; }; static int my_driver_open(struct inode *inode, struct file *file) { struct my_driver_data *data; data = kmalloc(sizeof(struct my_driver_data), GFP_KERNEL); data->dev = file->f_path.dentry->d_inode; file->private_data = data; return 0; } static int my_driver_release(struct inode *inode, struct file *file) { struct my_driver_data *data = file->private_data; kfree(data); return 0; } static ssize_t my_driver_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct my_driver_data *data = file->private_data; int ret; ret = copy_to_user(buf, &data->data, sizeof(int)); return sizeof(int) - ret; } static ssize_t my_driver_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct my_driver_data *data = file->private_data; int ret; ret = copy_from_user(&data->data, buf, sizeof(int)); return sizeof(int) - ret; } static const struct file_operations my_driver_fops = { .owner = THIS_MODULE, .open = my_driver_open, .release = my_driver_release, .read = my_driver_read, .write = my_driver_write, }; ``` 可以看到,定义了一个`my_driver_data`结构体,包含设备指针和一个整数型数据;以及对应的设备操作函数`my_driver_open`、`my_driver_release`、`my_driver_read`和`my_driver_write`。 4. 在文件中定义驱动程序的初始化函数和销毁函数,例如: ```c static int __init my_driver_init(void) { int ret; ret = register_chrdev(0, "my_driver", &my_driver_fops); if (ret < 0) { printk(KERN_ERR "my_driver: failed to register driver\n"); return ret; } return 0; } static void __exit my_driver_exit(void) { unregister_chrdev(0, "my_driver"); } ``` 可以看到,初始化函数中调用了`register_chrdev`函数来注册设备,并指定了设备操作函数;销毁函数中调用了`unregister_chrdev`函数来注销设备。 5. 在驱动程序的顶部添加必要的宏定义和头文件包含,例如: ```c #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/device.h> #include <linux/uaccess.h> MODULE_LICENSE("GPL"); MODULE_AUTHOR("Your Name"); MODULE_DESCRIPTION("My Driver"); MODULE_VERSION("0.1"); static int __init my_driver_init(void); static void __exit my_driver_exit(void); ``` 6. 编写Makefile文件,将驱动程序编译为内核模块,例如: ``` obj-m += my_driver.o all: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules clean: make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean ``` 7. 在Linux内核源码目录下,执行`make modules`命令编译内核模块,然后执行`insmod my_driver.ko`命令加载新的内核模块。 注意,在编写和修改内核驱动程序时,需要谨慎操作,建议在虚拟机环境下进行测试。

相关推荐

最新推荐

recommend-type

linux内核4.7版本设备驱动介绍

linux内核4.7版本设备驱动介绍,包含如下模块:class、pci、platform、pinctrl、kset、kobject、bus、device、device_driver、i2c、tty、regmap、misc、spin_lock、inode、mutex、cdev、gpio_keys、usb
recommend-type

Linux内核启动参数详解

Linux内核在启动的时候,能接收某些命令行选项或启动时参数。当内核不能识别某些硬件进而不能设置硬件参数或者为了避免内核更改某些参数的值,可以通过这种方式手动将这些参数传递给内核。
recommend-type

详解Linux用户态与内核态通信的几种方式

主要介绍了详解Linux用户态与内核态通信的几种方式,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

linux内核模块的编译详解(有图)

linux内核模块的编译。 1、准备内核模块源码 2、编写Makefile文件 3、编译模块 4、加载/卸载模块 5、加载模块时传递参数 6、总结
recommend-type

VMware Workstation安装(Linux内核)银河麒麟图文教程

主要为大家详细介绍了VMware Workstation安装(Linux内核)银河麒麟,文中安装步骤介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

工业AI视觉检测解决方案.pptx

工业AI视觉检测解决方案.pptx是一个关于人工智能在工业领域的具体应用,特别是针对视觉检测的深入探讨。该报告首先回顾了人工智能的发展历程,从起步阶段的人工智能任务失败,到专家系统的兴起到深度学习和大数据的推动,展示了人工智能从理论研究到实际应用的逐步成熟过程。 1. 市场背景: - 人工智能经历了从计算智能(基于规则和符号推理)到感知智能(通过传感器收集数据)再到认知智能(理解复杂情境)的发展。《中国制造2025》政策强调了智能制造的重要性,指出新一代信息技术与制造技术的融合是关键,而机器视觉因其精度和效率的优势,在智能制造中扮演着核心角色。 - 随着中国老龄化问题加剧和劳动力成本上升,以及制造业转型升级的需求,机器视觉在汽车、食品饮料、医药等行业的渗透率有望提升。 2. 行业分布与应用: - 国内市场中,电子行业是机器视觉的主要应用领域,而汽车、食品饮料等其他行业的渗透率仍有增长空间。海外市场则以汽车和电子行业为主。 - 然而,实际的工业制造环境中,由于产品种类繁多、生产线场景各异、生产周期不一,以及标准化和个性化需求的矛盾,工业AI视觉检测的落地面临挑战。缺乏统一的标准和模型定义,使得定制化的解决方案成为必要。 3. 工业化前提条件: - 要实现工业AI视觉的广泛应用,必须克服标准缺失、场景多样性、设备技术不统一等问题。理想情况下,应有明确的需求定义、稳定的场景设置、统一的检测标准和安装方式,但现实中这些条件往往难以满足,需要通过技术创新来适应不断变化的需求。 4. 行业案例分析: - 如金属制造业、汽车制造业、PCB制造业和消费电子等行业,每个行业的检测需求和设备技术选择都有所不同,因此,解决方案需要具备跨行业的灵活性,同时兼顾个性化需求。 总结来说,工业AI视觉检测解决方案.pptx着重于阐述了人工智能如何在工业制造中找到应用场景,面临的挑战,以及如何通过标准化和技术创新来推进其在实际生产中的落地。理解这个解决方案,企业可以更好地规划AI投入,优化生产流程,提升产品质量和效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MySQL运维最佳实践:经验总结与建议

![MySQL运维最佳实践:经验总结与建议](https://ucc.alicdn.com/pic/developer-ecology/2eb1709bbb6545aa8ffb3c9d655d9a0d.png?x-oss-process=image/resize,s_500,m_lfit) # 1. MySQL运维基础** MySQL运维是一项复杂而重要的任务,需要深入了解数据库技术和最佳实践。本章将介绍MySQL运维的基础知识,包括: - **MySQL架构和组件:**了解MySQL的架构和主要组件,包括服务器、客户端和存储引擎。 - **MySQL安装和配置:**涵盖MySQL的安装过
recommend-type

stata面板数据画图

Stata是一个统计分析软件,可以用来进行数据分析、数据可视化等工作。在Stata中,面板数据是一种特殊类型的数据,它包含了多个时间段和多个个体的数据。面板数据画图可以用来展示数据的趋势和变化,同时也可以用来比较不同个体之间的差异。 在Stata中,面板数据画图有很多种方法。以下是其中一些常见的方法
recommend-type

智慧医院信息化建设规划及愿景解决方案.pptx

"智慧医院信息化建设规划及愿景解决方案.pptx" 在当今信息化时代,智慧医院的建设已经成为提升医疗服务质量和效率的重要途径。本方案旨在探讨智慧医院信息化建设的背景、规划与愿景,以满足"健康中国2030"的战略目标。其中,"健康中国2030"规划纲要强调了人民健康的重要性,提出了一系列举措,如普及健康生活、优化健康服务、完善健康保障等,旨在打造以人民健康为中心的卫生与健康工作体系。 在建设背景方面,智慧医院的发展受到诸如分级诊疗制度、家庭医生签约服务、慢性病防治和远程医疗服务等政策的驱动。分级诊疗政策旨在优化医疗资源配置,提高基层医疗服务能力,通过家庭医生签约服务,确保每个家庭都能获得及时有效的医疗服务。同时,慢性病防治体系的建立和远程医疗服务的推广,有助于减少疾病发生,实现疾病的早诊早治。 在规划与愿景部分,智慧医院的信息化建设包括构建完善的电子健康档案系统、健康卡服务、远程医疗平台以及优化的分级诊疗流程。电子健康档案将记录每位居民的动态健康状况,便于医生进行个性化诊疗;健康卡则集成了各类医疗服务功能,方便患者就医;远程医疗技术可以跨越地域限制,使优质医疗资源下沉到基层;分级诊疗制度通过优化医疗结构,使得患者能在合适的层级医疗机构得到恰当的治疗。 在建设内容与预算方面,可能涉及硬件设施升级(如医疗设备智能化)、软件系统开发(如电子病历系统、预约挂号平台)、网络基础设施建设(如高速互联网接入)、数据安全与隐私保护措施、人员培训与技术支持等多个方面。预算应考虑项目周期、技术复杂性、维护成本等因素,以确保项目的可持续性和效益最大化。 此外,"互联网+医疗健康"的政策支持鼓励创新,智慧医院信息化建设还需要结合移动互联网、大数据、人工智能等先进技术,提升医疗服务的便捷性和精准度。例如,利用AI辅助诊断、物联网技术监控患者健康状态、区块链技术保障医疗数据的安全共享等。 智慧医院信息化建设是一项系统工程,需要政府、医疗机构、技术供应商和社会各方共同参与,以实现医疗服务质量的提升、医疗资源的优化配置,以及全民健康水平的提高。在2023年的背景下,这一进程将进一步加速,为我国的医疗健康事业带来深远影响。