编写基于Hadoop的商品推荐系统代码
时间: 2024-01-24 12:01:53 浏览: 57
基于Hadoop的商品推荐系统需要使用协同过滤算法来实现,以下是一个简单的示例代码:
1. 数据准备
首先需要准备用户行为数据,一般包括用户ID、商品ID和评分等信息。将数据放入HDFS中,例如:
```
/user/behavior_data/user1,item1,5
/user/behavior_data/user1,item2,3
/user/behavior_data/user2,item1,4
/user/behavior_data/user2,item2,2
```
2. MapReduce作业
使用MapReduce作业实现协同过滤算法,这里以基于物品的协同过滤为例。具体步骤如下:
- Map阶段:将输入数据按照商品ID进行分组,输出<商品ID, (用户ID, 评分)>键值对。
- Reduce阶段:对于每一个商品ID,计算与其相似度最高的K个商品,并输出<商品ID, 相似商品ID列表>键值对。
代码示例:
Map阶段:
```
public static class Map extends Mapper<LongWritable, Text, Text, Text> {
private Text outKey = new Text();
private Text outValue = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] tokens = value.toString().split(",");
String user = tokens[0];
String item = tokens[1];
String rating = tokens[2];
outKey.set(item);
outValue.set(user + "," + rating);
context.write(outKey, outValue);
}
}
```
Reduce阶段:
```
public static class Reduce extends Reducer<Text, Text, Text, Text> {
private Text outValue = new Text();
public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
Map<String, Integer> ratings = new HashMap<>();
for (Text value : values) {
String[] tokens = value.toString().split(",");
String user = tokens[0];
int rating = Integer.parseInt(tokens[1]);
ratings.put(user, rating);
}
List<Map.Entry<String, Integer>> list = new ArrayList<>(ratings.entrySet());
Collections.sort(list, new Comparator<Map.Entry<String, Integer>>() {
public int compare(Map.Entry<String, Integer> o1, Map.Entry<String, Integer> o2) {
return o2.getValue().compareTo(o1.getValue());
}
});
StringBuilder sb = new StringBuilder();
for (int i = 0; i < K; i++) {
sb.append(list.get(i).getKey()).append(",");
}
outValue.set(sb.toString());
context.write(key, outValue);
}
}
```
3. 推荐结果输出
将Reduce阶段的输出结果存储在HDFS中,作为推荐系统的输入数据。然后根据用户的历史行为数据和推荐结果,计算出最终的推荐商品列表。
代码示例:
```
public List<String> getRecommendations(String user) {
List<String> items = new ArrayList<>();
Map<String, Integer> ratings = new HashMap<>();
// 读取用户历史行为数据
Path path = new Path("/user/behavior_data/" + user);
FileSystem fs = FileSystem.get(new Configuration());
if (fs.exists(path)) {
BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(path)));
String line;
while ((line = br.readLine()) != null) {
String[] tokens = line.split(",");
String item = tokens[1];
int rating = Integer.parseInt(tokens[2]);
ratings.put(item, rating);
}
br.close();
}
// 读取推荐结果
Path path2 = new Path("/user/recommendation_data/" + user);
if (fs.exists(path2)) {
BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(path2)));
String line;
while ((line = br.readLine()) != null) {
String[] tokens = line.split(",");
for (String item : tokens) {
if (!ratings.containsKey(item)) {
items.add(item);
}
}
}
br.close();
}
return items;
}
```
以上是一个简单的基于Hadoop的商品推荐系统示例代码,实际应用中需要根据具体情况进行调整和优化。
阅读全文