迁移学习人脸识别的步骤和代码
时间: 2023-07-07 18:42:56 浏览: 119
人脸识别步骤
5星 · 资源好评率100%
迁移学习人脸识别的步骤如下:
1. 数据准备:收集人脸数据集并标注。
2. 模型选择和预训练:选择预训练好的人脸识别模型,如VGGFace、FaceNet、DeepID等,用预训练模型在人脸数据集上进行微调。
3. 特征提取:使用预训练模型提取人脸特征。
4. 训练分类器:使用提取的特征训练分类器,如支持向量机(SVM)、K近邻等分类器。
5. 预测和评估:使用测试数据集对模型进行评估。
以下是使用Python和Keras实现的示例代码:
1. 数据准备
```python
import os
import numpy as np
from keras.preprocessing.image import load_img, img_to_array
def load_dataset(path):
X = []
y = []
for foldername in os.listdir(path):
folderpath = os.path.join(path, foldername)
for filename in os.listdir(folderpath):
imagepath = os.path.join(folderpath, filename)
image = load_img(imagepath, target_size=(224, 224))
image = img_to_array(image)
X.append(image)
y.append(int(foldername))
X = np.array(X)
y = np.array(y)
return X, y
```
2. 模型选择和预训练
```python
from keras.applications.vgg16 import VGG16
from keras.layers import Input, Flatten, Dense
from keras.models import Model
def create_model():
input_tensor = Input(shape=(224, 224, 3))
base_model = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor)
x = Flatten()(base_model.output)
x = Dense(256, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=base_model.input, outputs=predictions)
return model
```
3. 特征提取
```python
def extract_features(X):
input_tensor = Input(shape=(224, 224, 3))
base_model = VGG16(include_top=False, weights='imagenet', input_tensor=input_tensor)
model = Model(inputs=base_model.input, outputs=base_model.output)
features = model.predict(X)
return features
```
4. 训练分类器
```python
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
X, y = load_dataset('data')
features = extract_features(X)
X_train, X_test, y_train, y_test = train_test_split(features, y, test_size=0.2, random_state=42)
clf = SVC(kernel='linear')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print('Accuracy:', acc)
```
5. 预测和评估
```python
X_test, y_test = load_dataset('test_data')
features_test = extract_features(X_test)
y_pred = clf.predict(features_test)
acc = accuracy_score(y_test, y_pred)
print('Accuracy:', acc)
```
阅读全文