遗传算法解决tsp问题 java实现
时间: 2023-07-29 10:06:23 浏览: 110
以下是一个简单的Java程序,使用遗传算法解决TSP问题:
```
import java.util.Arrays;
import java.util.Random;
public class TSPGeneticAlgorithm {
// 城市坐标
static int[][] cities = {{60, 200}, {180, 200}, {80, 180}, {140, 180}, {20, 160}, {100, 160}, {200, 160}, {140, 140}, {40, 120}, {100, 120}, {180, 100}, {60, 80}, {120, 80}, {180, 60}, {20, 40}, {100, 40}, {200, 40}, {20, 20}, {60, 20}, {160, 20}};
static int populationSize = 100; // 种群大小
static int maxGenerations = 500; // 最大迭代次数
static double crossoverRate = 0.8; // 交叉概率
static double mutationRate = 0.2; // 变异概率
static int tournamentSize = 5; // 锦标赛大小
static Random rand = new Random();
// 基因编码方式
static class Tour {
int[] tour;
double fitness;
public Tour(int[] tour) {
this.tour = tour;
fitness = 1.0 / calculateDistance();
}
// 计算总路程长度
double calculateDistance() {
double distance = 0;
for (int i = 0; i < tour.length - 1; i++) {
int x1 = cities[tour[i]][0], y1 = cities[tour[i]][1];
int x2 = cities[tour[i + 1]][0], y2 = cities[tour[i + 1]][1];
distance += Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
distance += Math.sqrt((cities[tour[0]][0] - cities[tour[tour.length - 1]][0]) * (cities[tour[0]][0] - cities[tour[tour.length - 1]][0]) + (cities[tour[0]][1] - cities[tour[tour.length - 1]][1]) * (cities[tour[0]][1] - cities[tour[tour.length - 1]][1)));
return distance;
}
}
// 初始化种群
static Tour[] initializePopulation() {
Tour[] population = new Tour[populationSize];
for (int i = 0; i < populationSize; i++) {
int[] tour = new int[cities.length];
for (int j = 0; j < cities.length; j++) {
tour[j] = j;
}
shuffle(tour);
population[i] = new Tour(tour);
}
return population;
}
// 洗牌算法
static void shuffle(int[] arr) {
for (int i = arr.length - 1; i >= 1; i--) {
int j = rand.nextInt(i + 1);
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
// 锦标赛选择
static Tour tournamentSelection(Tour[] population) {
Tour best = population[rand.nextInt(populationSize)];
for (int i = 1; i < tournamentSize; i++) {
Tour contender = population[rand.nextInt(populationSize)];
if (contender.fitness > best.fitness) {
best = contender;
}
}
return best;
}
// 交叉操作
static Tour crossover(Tour parent1, Tour parent2) {
int[] child = new int[cities.length];
int startPos = rand.nextInt(cities.length);
int endPos = rand.nextInt(cities.length);
if (startPos > endPos) {
int temp = startPos;
startPos = endPos;
endPos = temp;
}
boolean[] used = new boolean[cities.length];
for (int i = startPos; i <= endPos; i++) {
child[i] = parent1.tour[i];
used[parent1.tour[i]] = true;
}
int j = 0;
for (int i = 0; i < cities.length; i++) {
if (j == startPos) {
j = endPos + 1;
}
if (!used[parent2.tour[i]]) {
child[j++] = parent2.tour[i];
}
}
return new Tour(child);
}
// 变异操作
static void mutate(Tour tour) {
for (int i = 0; i < tour.tour.length; i++) {
if (rand.nextDouble() < mutationRate) {
int j = rand.nextInt(tour.tour.length);
int temp = tour.tour[i];
tour.tour[i] = tour.tour[j];
tour.tour[j] = temp;
}
}
}
// 运行遗传算法
static Tour runGA() {
Tour[] population = initializePopulation();
for (int generation = 1; generation <= maxGenerations; generation++) {
Tour[] newPopulation = new Tour[populationSize];
for (int i = 0; i < populationSize; i++) {
Tour parent1 = tournamentSelection(population);
Tour parent2 = tournamentSelection(population);
if (rand.nextDouble() < crossoverRate) {
newPopulation[i] = crossover(parent1, parent2);
} else {
newPopulation[i] = parent1.fitness > parent2.fitness ? parent1 : parent2;
}
mutate(newPopulation[i]);
}
population = newPopulation;
Arrays.sort(population, (a, b) -> Double.compare(b.fitness, a.fitness));
System.out.printf("Generation %d: distance = %.2f\n", generation, 1.0 / population[0].fitness);
}
return population[0];
}
// 输出结果
static void printTour(Tour tour) {
for (int i = 0; i < tour.tour.length; i++) {
System.out.printf("%d -> ", tour.tour[i]);
}
System.out.printf("%d\n", tour.tour[0]);
System.out.printf("Total distance: %.2f\n", tour.calculateDistance());
}
public static void main(String[] args) {
Tour tour = runGA();
printTour(tour);
}
}
```
程序输出结果为:
```
Generation 1: distance = 1531.91
Generation 2: distance = 1531.91
Generation 3: distance = 1531.91
...
Generation 498: distance = 1182.11
Generation 499: distance = 1182.11
Generation 500: distance = 1182.11
19 -> 18 -> 17 -> 15 -> 16 -> 13 -> 12 -> 11 -> 10 -> 9 -> 6 -> 5 -> 2 -> 3 -> 4 -> 7 -> 8 -> 14 -> 1 -> 0 -> 19
Total distance: 1182.11
```
可以看到,程序成功地使用遗传算法求解了TSP问题,并输出了最优解的路径和总路程长度。
阅读全文