resnet50网络Bottleneck Block详解
时间: 2024-06-19 19:01:59 浏览: 207
ResNet50是一种深度残差网络(Residual Network),其中的关键组件是Bottleneck Block,也称为三元组块。这种设计允许网络在增加深度的同时避免梯度消失和过拟合问题。Bottleneck Block由三个主要部分组成:
1. **扩张卷积(Expansion Convolution)**:通常是一个1x1的卷积层,其作用是减小通道数(feature map的维度),从而降低计算量,并有助于提取更高级别的特征。
2. **主卷积(Depthwise Convolution)**:这是一个深度卷积(depthwise convolution),它的每个滤波器只对输入的一个通道进行卷积操作,这样可以显著扩展网络的容量而保持计算复杂度相对较低。这个步骤实际上是一个逐点的卷积,因为它对每个输入通道应用一个单独的滤波器。
3. **收缩卷积(Compression Convolution)**:又是一个1x1的卷积层,将上一步的输出通道数恢复到原始的尺寸,这部分也叫做投影层(projection shortcut),使得可以直接加上原始输入,这就是所谓的残差连接(residual connection)。这使得网络能够学习到如何直接添加输入到输出,即使在很深的层次,也可以通过这些连接直接传播信息。
Bottleneck Block的优势在于它允许在网络中加入更多的卷积层,而不会导致模型变得过于深而导致性能下降。它通过引入瓶颈结构和残差连接,使训练变得更加容易,同时也提高了模型的性能。
相关问题
Bottleneck Transformer
Bottleneck Transformer(简称BotNet)是一种深度学习模型,通过在Multi-Head Self-Attention结构前后加上1x1卷积,从而扩展了传统的Transformer结构。BotNet和ViT中的Transformer block有一定的相似性,可以将具有MHSA的ResNet bottleneck块视为具有bottleneck结构的Transformer块,尽管它们在残差连接、标准化层等方面存在一些微小差异。这个模型在2021年由Google的研究人员在论文"Bottleneck Transformers for Visual Recognition"中提出,并引入了CNN与Attention的融合网络。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [深度学习之图像分类(十九)-- Bottleneck Transformer(BoTNet)网络详解](https://blog.csdn.net/baidu_36913330/article/details/120218954)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)](https://blog.csdn.net/qq_30452897/article/details/131741943)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
Bottleneck transformer
Bottleneck Transformer是一种深度学习模型,它是在ViT(Vision Transformer)中引入的一种变体。它通过在Multi-Head Self-Attention结构前后加上1×1卷积层来构建。Bottleneck Transformer和ViT中的Transformer block具有亲属关系,它们的结构并不完全不同。作者在论文中指出,具有MHSA的ResNet bottleneck块可以被视为具有bottleneck结构的Transformer块,除了一些细微的差异,如残差连接和规范化层的选择等。Bottleneck Transformer模型在2021年由Google的研究人员在论文"Bottleneck Transformers for Visual Recognition"中提出。
如果你想使用Bottleneck Transformer模型,你可以通过pip命令安装bottleneck-transformer-pytorch库,并按照提供的用法进行引用和使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [深度学习之图像分类(十九)-- Bottleneck Transformer(BoTNet)网络详解](https://blog.csdn.net/baidu_36913330/article/details/120218954)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [第53步 深度学习图像识别:Bottleneck Transformer建模(Pytorch)](https://blog.csdn.net/qq_30452897/article/details/131741943)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [bottleneck-transformer-pytorch:Pytorch中瓶颈变压器的实现](https://download.csdn.net/download/weixin_42111465/15605077)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文