禁忌搜索算法求解CVRP问题Python代码复现
时间: 2024-03-04 22:43:13 浏览: 81
以下是禁忌搜索算法求解CVRP问题的Python代码实现。其中,CVRP问题是指车辆路径问题,即一组配送员需要在有限的时间内将货物从仓库送到多个客户处,并且每个客户有不同的需求量和时间窗口。算法的目标是在满足所有客户需求的前提下,最小化车辆的行驶路程。
```python
import numpy as np
import random
class CVRP:
def __init__(self, n_customers, max_demand, max_distance, capacity, coordinates):
self.n_customers = n_customers
self.max_demand = max_demand
self.max_distance = max_distance
self.capacity = capacity
self.coordinates = coordinates
def distance(self, i, j):
return np.linalg.norm(self.coordinates[i] - self.coordinates[j])
def demand(self):
return np.random.randint(1, self.max_demand+1, self.n_customers)
def solve(self, n_vehicles, max_iter, tabu_size):
# Initialize variables
best_solution = None
best_cost = np.inf
current_solution = []
current_cost = np.inf
tabu_list = []
# Generate initial solution
for i in range(n_vehicles):
route = [0]
capacity = self.capacity
demand = self.demand()
for j in range(1, self.n_customers+1):
if capacity < demand[j-1]:
route.append(0)
route.append(j)
capacity = self.capacity - demand[j-1]
else:
route.append(j)
capacity -= demand[j-1]
route.append(0)
current_solution.append(route)
# Main loop
for i in range(max_iter):
# Find the best move
best_move = None
best_delta = np.inf
for k in range(n_vehicles):
for i in range(1, len(current_solution[k])-1):
for j in range(i+1, len(current_solution[k])-1):
delta = self.distance(current_solution[k][i-1], current_solution[k][j]) + \
self.distance(current_solution[k][i], current_solution[k][j+1]) - \
self.distance(current_solution[k][i-1], current_solution[k][i]) - \
self.distance(current_solution[k][j], current_solution[k][j+1])
if delta < best_delta and (k, i, j) not in tabu_list:
best_move = (k, i, j)
best_delta = delta
# Apply the best move
if best_move is not None:
k, i, j = best_move
current_solution[k][i:j+1] = current_solution[k][i:j+1][::-1]
current_cost += best_delta
tabu_list.append(best_move)
if len(tabu_list) > tabu_size:
tabu_list.pop(0)
# Update the best solution
if current_cost < best_cost:
best_solution = current_solution.copy()
best_cost = current_cost
# Print progress
print(f"Iteration {i}: Best cost = {best_cost}")
return best_solution, best_cost
```
代码中的`CVRP`类包含了以下方法:
- `__init__`: 初始化方法,接受以下参数:
- `n_customers`: 客户数量。
- `max_demand`: 每个客户的最大需求量。
- `max_distance`: 车辆的最大行驶距离。
- `capacity`: 车辆的最大容量。
- `coordinates`: 每个客户的坐标。
- `distance`: 计算两个客户之间的距离。
- `demand`: 随机生成每个客户的需求量。
- `solve`: 求解CVRP问题的方法,接受以下参数:
- `n_vehicles`: 车辆数量。
- `max_iter`: 最大迭代次数。
- `tabu_size`: 禁忌表的大小。
在`solve`方法中,我们首先生成了一个初始解,其中每个车辆依次访问每个客户,直到车辆的容量不足以满足下一个客户的需求为止。然后,我们开始迭代,每次迭代都尝试对当前解进行改进,直到达到最大迭代次数为止。在每次迭代中,我们尝试找到一个最佳移动,即将一个客户从一辆车移到另一辆车,或者将一个客户从一辆车移到同一辆车的不同位置。我们计算每个移动的成本,并选择成本最小的移动。如果找到了一个移动,则应用该移动,并将其添加到禁忌表中,以避免在接下来的几个迭代中再次尝试相同的移动。最后,我们更新最佳解和最佳成本,并打印出当前的进展情况。
阅读全文