pytorch训练代码介绍
时间: 2023-07-01 11:17:55 浏览: 95
pytorch训练代码
好的,以下是一个简单的PyTorch训练代码的介绍:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
```
2. 定义数据集和数据加载器:
```python
train_dataset = ...
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
```
3. 定义模型:
```python
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
model = MyModel()
```
4. 定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
```
5. 训练模型:
```python
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
6. 测试模型:
```python
test_dataset = ...
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
inputs, labels = data
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
以上就是一个简单的PyTorch训练代码的介绍,其中还有很多细节需要根据具体情况进行调整。
阅读全文