生成代码搭建并训练逻辑回归分类器处理鸢尾花分类问题。使用已训练的分类器对测试集中的鸢尾花数据进行分类并对分类结果进行多性能指标评估。 1.从sklearn.datasets中导入鸢尾花数据集iris,并使用iris.data和iris.target查看样本数据和对应的标签数据前10行的数据; 2.使用sklearn的train_test_split函数将数据集按照8:2的比例划分为训练集和测试集(注意数据集分为数据和标签两部分)。

时间: 2024-02-25 15:53:26 浏览: 19
好的,以下是生成代码: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 加载鸢尾花数据集 iris = load_iris() # 查看样本数据和对应的标签数据前10行的数据 print(iris.data[:10]) print(iris.target[:10]) # 划分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42) # 初始化逻辑回归分类器 clf = LogisticRegression() # 训练分类器 clf.fit(X_train, y_train) # 对测试集进行预测 y_pred = clf.predict(X_test) # 计算多性能指标评估 acc = accuracy_score(y_test, y_pred) precision = precision_score(y_test, y_pred, average='macro') recall = recall_score(y_test, y_pred, average='macro') f1 = f1_score(y_test, y_pred, average='macro') # 输出多性能指标评估结果 print("Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1-score: {:.4f}".format(acc, precision, recall, f1)) ``` 执行以上代码,对鸢尾花数据进行逻辑回归分类器的训练和测试,并输出多性能指标评估结果。

相关推荐

最新推荐

recommend-type

基于鸢尾花数据集实现线性判别式多分类

本文在自己编写梯度下降的逻辑斯蒂判别式算法的基础上,对鸢尾花数据集实现多分类。 鸢尾花数据集公包含三类数据,每条数据四个特征,从中随机选取70%的数据作为训练集,30%的数据作为测试集。 主要包含三个函数:...
recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

了解分类问题的概念以及基于BP神经网络设计分类器的基本流程。 二、实验平台 MatLab/Simulink仿真平台。 三、实验内容和步骤 1. iris数据集简介 iris数据集的中文名是安德森鸢尾花卉数据集,英文全称是Anderson's ...
recommend-type

Python sklearn库实现PCA教程(以鸢尾花分类为例)

我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布。样本数据结构如下图: 其中样本总数为150,鸢尾花的类别有三种,分别标记为0,1,2 代码 ...
recommend-type

tensorflow2 5种优化器 SGD,SGDM,ADAGRAD,RMSPROP,ADAM 在鸢尾花数据集中的对比.docx

tensorflow2 5种优化器 SGD,SGDM,ADAGRAD,RMSPROP,ADAM 在鸢尾花数据集中的对比,word 文档。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

前端深拷贝 和浅拷贝有哪些方式,你在哪里使用过

前端深拷贝和浅拷贝的方式有很多,下面列举几种常用的方式: 深拷贝: 1. JSON.parse(JSON.stringify(obj)),该方法可以将对象序列化为字符串,再将字符串反序列化为新的对象,从而实现深拷贝。但是该方法有一些限制,例如无法拷贝函数、RegExp等类型的数据。 2. 递归拷贝,即遍历对象的每个属性并进行拷贝,如果属性值是对象,则递归进行拷贝。 3. 使用第三方库如lodash、jQuery等提供的深拷贝方法。 浅拷贝: 1. Object.assign(target, obj1, obj2, ...),该方法可以将源对象的属性浅拷贝到目标对象中,如果有相同的属性,则会
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。