self.w = nn.Parameter(torch.ones(size=(self.nlayers - 1, 2))) W_att = self.sm(self.w[i - 1])
时间: 2024-06-03 22:10:27 浏览: 97
你想问的是这段代码实现的功能是什么吗?
这段代码初始化了一个权重矩阵 W,用于计算多头注意力机制中每个头部的权重。使用 nn.Parameter 将权重矩阵初始化为全 1 矩阵,并使用 softmax 函数将其归一化,使每行的数值表示对每个头部的注意力大小。其中,self.nlayers 表示网络的层数。
相关问题
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
class HGMN(nn.Module): def __init__(self, args, n_user, n_item, n_category): super(HGMN, self).__init__() self.n_user = n_user self.n_item = n_item self.n_category = n_category self.n_hid = args.n_hid self.n_layers = args.n_layers self.mem_size = args.mem_size self.emb = nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid)) self.norm = nn.LayerNorm((args.n_layers + 1) * self.n_hid) self.layers = nn.ModuleList() for i in range(0, self.n_layers): self.layers.append(GNNLayer(self.n_hid, self.n_hid, self.mem_size, 5, layer_norm=True, dropout=args.dropout, activation=nn.LeakyReLU(0.2, inplace=True))) self.pool = GraphPooling('mean') self.reset_parameters()
这是一个名为 `HGMN` 的类,继承自 `nn.Module`,用于定义一个高阶图记忆网络(Hierarchical Graph Memory Network)。让我逐行解释一下代码的功能:
1. 在类的初始化方法 `__init__(self, args, n_user, n_item, n_category)` 中,接受一些参数:
- `args`:包含一些超参数的对象。
- `n_user`:用户的数量。
- `n_item`:物品的数量。
- `n_category`:类别的数量。
2. 在初始化方法中,通过调用 `super(HGMN, self).__init__()`,使用父类的初始化方法初始化该类。
3. 将传入的参数赋值给类的成员变量。
4. 使用 `nn.Parameter(torch.empty(n_user + n_item + n_category, self.n_hid))` 创建一个可训练的参数 `emb`,表示嵌入层的权重矩阵。该矩阵的大小为 (n_user + n_item + n_category) x n_hid。
5. 使用 `nn.LayerNorm((args.n_layers + 1) * self.n_hid)` 创建一个层归一化层,用于对输入进行归一化处理。输入的维度为 (args.n_layers + 1) * self.n_hid。
6. 使用 `nn.ModuleList()` 创建一个空的模块列表 `layers`,用于存储多个 GNNLayer 层。
7. 使用循环语句,根据 `self.n_layers` 的值,依次创建 `GNNLayer` 层,并将其添加到 `layers` 列表中。
8. 使用 `GraphPooling('mean')` 创建一个图池化层,用于对图的节点进行池化操作,这里使用均值池化。
9. 调用 `reset_parameters()` 方法,用于初始化模型的参数。
这个类定义了一个层次化图记忆网络模型,其中包含嵌入层、层归一化层、多个 GNNLayer 层以及图池化层。通过传入不同的参数和超参数,可以创建不同配置的 HGMN 模型。
阅读全文