不使用Attention类,使用tensorflow.keras.layers里边的API
时间: 2024-05-16 15:14:30 浏览: 144
好的,使用TensorFlow的API来实现一个简单的Transformer模型,不使用Attention类,可以参考以下代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization
from tensorflow.keras.models import Model
def create_model(input_vocab_size, output_vocab_size, max_length, d_model, num_heads, dff, dropout_rate):
# Encoder Input
encoder_input = Input(shape=(max_length,), name='encoder_input')
# Decoder Input
decoder_input = Input(shape=(max_length,), name='decoder_input')
# Embedding layers
encoder_embedding = Dense(d_model, name='encoder_embedding')
decoder_embedding = Dense(d_model, name='decoder_embedding')
# Scale embedding by sqrt(d_model)
encoder_embedding_scaled = tf.math.sqrt(tf.cast(d_model, tf.float32)) * encoder_embedding(encoder_input)
decoder_embedding_scaled = tf.math.sqrt(tf.cast(d_model, tf.float32)) * decoder_embedding(decoder_input)
# Positional Encoding
def positional_encoding(inputs):
position = tf.range(0, max_length, dtype=tf.float32)[:, tf.newaxis]
div_term = tf.exp(tf.range(0, d_model, 2, dtype=tf.float32) * -(tf.math.log(10000.0) / d_model))
pos_encoding = tf.concat([tf.sin(position * div_term), tf.cos(position * div_term)], axis=-1)
return inputs + pos_encoding
# Add Positional Encoding
encoder_embedding_scaled = positional_encoding(encoder_embedding_scaled)
decoder_embedding_scaled = positional_encoding(decoder_embedding_scaled)
# Encoder
encoder_outputs = encoder_embedding_scaled
for i in range(2):
# Multi-Head Attention
attention = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
attention_output = attention(encoder_outputs, encoder_outputs)
# Add & Normalize
attention_output = LayerNormalization(epsilon=1e-6)(encoder_outputs + attention_output)
# Feed Forward
ffn = tf.keras.Sequential([Dense(dff, activation='relu'), Dense(d_model)])
ffn_output = ffn(attention_output)
# Add & Normalize
encoder_outputs = LayerNormalization(epsilon=1e-6)(attention_output + ffn_output)
# Decoder
decoder_outputs = decoder_embedding_scaled
for i in range(2):
# Masked Multi-Head Attention
masked_attention = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
masked_attention_output = masked_attention(decoder_outputs, decoder_outputs, look_ahead_mask=True)
# Add & Normalize
masked_attention_output = LayerNormalization(epsilon=1e-6)(decoder_outputs + masked_attention_output)
# Multi-Head Attention
attention = tf.keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=d_model)
attention_output = attention(encoder_outputs, masked_attention_output)
# Add & Normalize
attention_output = LayerNormalization(epsilon=1e-6)(masked_attention_output + attention_output)
# Feed Forward
ffn = tf.keras.Sequential([Dense(dff, activation='relu'), Dense(d_model)])
ffn_output = ffn(attention_output)
# Add & Normalize
decoder_outputs = LayerNormalization(epsilon=1e-6)(attention_output + ffn_output)
# Output layer
output = Dense(output_vocab_size, activation='softmax', name='decoder_output')(decoder_outputs)
# Define model
model = Model(inputs=[encoder_input, decoder_input], outputs=output)
return model
```
上述代码中,我们使用了Dense层来进行嵌入,而不是使用Embedding层。我们也没有使用Attention层,而是使用MultiHeadAttention类。同时,我们使用了LayerNormalization层来对模型进行归一化处理。在Transformer的Encoder和Decoder中,我们分别使用了两个MultiHeadAttention层和一个Feed Forward Network层,并且在每个层中都使用了LayerNormalization层。最后,我们使用Dense层来进行输出。
阅读全文