l = np.fix(len(r)/3).astype(int) VaR_RM = np.zeros(len(r)) qalpha = norm.ppf(0.05) #计算分位数 for i in range(l, len(r)): mhat, shat = norm.fit(r[i-50:i]) VaR_RM[i] = -(mhat + qalpha*shat) print(VaR_RM) plt.plot(r) plt.plot(VaR_RM*-1) plt.show()解析这段代码
时间: 2024-04-23 20:22:09 浏览: 61
这段代码主要实现了对收益率序列r的风险价值(Value at Risk, VaR)的计算与绘图。具体地,代码实现了以下步骤:
1. 首先,代码计算了VaR所需的分位数qalpha,这里使用了标准正态分布的累计分布函数的逆函数(norm.ppf()),计算的是0.05分位数,即95%置信水平下的VaR。
2. 接着,代码遍历了r中的每个元素,从r的第l个元素开始进行计算,l为r长度的1/3取整后转换为整数的结果。这里的l相当于是一个滞后期,是为了避免计算的过程中出现“未来数据泄露”的问题。
3. 对于每个i,代码使用norm.fit()函数对r[i-50:i]这个区间内的收益率进行正态分布拟合,得到拟合的均值mhat和标准差shat。
4. 最后,代码将VaR_RM[i]赋值为-(mhat + qalpha*shat),即计算出在95%置信水平下的VaR。同时,代码还绘制了r和计算出的VaR_RM的曲线图。
需要注意的是,这里的VaR计算过程假设收益率服从正态分布,因此可能存在一定的局限性。此外,代码中的一些函数来自于numpy和matplotlib库,需要先导入这些库才能运行。
相关问题
class PSO: def __init__(self, parameters): """ particle swarm optimization parameter: a list type, like [NGEN, pop_size, var_num_min, var_num_max] """ # 初始化 self.NGEN = parameters[0] # 迭代的代数 self.pop_size = parameters[1] # 种群大小 self.var_num = len(parameters[2]) # 变量个数 self.bound = [] # 变量的约束范围 self.bound.append(parameters[2]) self.bound.append(parameters[3]) self.pop_x = np.zeros((self.pop_size, self.var_num)) # 所有粒子的位置 self.pop_v = np.zeros((self.pop_size, self.var_num)) # 所有粒子的速度 self.p_best = np.zeros((self.pop_size, self.var_num)) # 每个粒子最优的位置 self.g_best = np.zeros((1, self.var_num)) # 全局最优的位置
这段代码实现了一个粒子群优化算法(Particle Swarm Optimization,PSO)的类。在初始化函数中,首先解析传入的参数,包括迭代的代数NGEN、种群大小pop_size、变量的个数var_num以及变量的约束范围。然后,声明了一个bound列表,并向其中添加了变量的约束范围。接着,声明了一些用于存储粒子位置、速度、最优位置的数组,包括pop_x、pop_v、p_best和g_best。其中pop_x是一个大小为(pop_size, var_num)的二维数组,用于存储所有粒子的位置;pop_v是一个大小为(pop_size, var_num)的二维数组,用于存储所有粒子的速度;p_best是一个大小为(pop_size, var_num)的二维数组,用于存储每个粒子的最优位置;g_best是一个大小为(1, var_num)的二维数组,用于存储全局最优的位置。这些数组的值在算法迭代过程中会被不断更新。
root = tk.Tk() root.withdraw() f_path = filedialog.askopenfilename() I0 = cv2.imread(f_path ) b, g, r = cv2.split(I0) m, n = r.shape flag = False mode = 0 def abc(x): global flag a = keyboard.KeyboardEvent(event_type='down', scan_code=2, name='1') b = keyboard.KeyboardEvent(event_type='down', scan_code=3, name='2') c = keyboard.KeyboardEvent(event_type='down', scan_code=4, name='3') if x.event_type == a.event_type and x.scan_code == a.scan_code: print("迭代式阈值选择算法") mode = 1 flag = True if x.event_type == b.event_type and x.scan_code == b.scan_code: print("大律算法") flag = True mode = 2 if x.event_type == c.event_type and x.scan_code == c.scan_code: print("三角算法") flag = True mode = 3 keyboard.hook(abc) if flag == False: time.sleep(5) # 等待5秒 if mode == 1: i_b = b.ravel() mea1_b = np.mean(i_b) mea = np.zeros(shape=(1, 1)) while True: mea1 = mea[0] i_b1 = np.where(i_b > mea1_b) mea2_b = np.mean(i_b[i_b1]) i_b2 = np.where(i_b < mea1_b) mea3_b = np.mean(i_b[i_b2]) mea1_b = (mea3_b + mea2_b) / 2 if mea1_b == mea1: break else: mea[0] = mea1_b I_B = b I_B[I_B > mea1_b] = 255 I_B[I_B < mea1_b] = 0 area_b = np.where(I_B == 255) print(mea1_b) i_r = r.ravel() mea1_r = np.mean(i_r) mea = np.zeros(shape=(1, 1)) while True: mea1 = mea[0] i_r1 = np.where(i_r > mea1_r) mea2_r = np.mean(i_r[i_r1]) i_r2 = np.where(i_r < mea1_r) mea3_r = np.mean(i_r[i_r2]) mea1_r = (mea3_r + mea2_r) / 2 if mea1_r == mea1: break else: mea[0] = mea1_r I_R = r I_R[I_R > mea1_r] = 255 I_R[I_R < mea1_r] = 0 area_r = np.where(I_R == 255) I_Rx = area_r[0] I_Ry = area_r[1] print(mea1_r)哪里出现了问题
在函数 `abc(x)` 中,变量 `mode` 在函数内部被赋值,但没有使用 `global` 声明为全局变量。因此,在后面的条件语句中,`mode` 始终为 0,导致程序一直执行 `mode == 1` 的分支,而不是根据用户输入的按键执行相应的阈值选择算法。解决方法是在函数 `abc(x)` 中,将 `mode` 声明为全局变量,即在函数开头加上 `global mode`。
阅读全文