import os import random from tqdm import tqdm # 指定 images 文件夹路径 image_dir = "C:/Users/86152/Desktop/coco128/images/train2017" # 指定 labels 文件夹路径 label_dir = "C:/Users/86152/Desktop/coco128/labels/train2017" # 创建一个空列表来存储有效图片的路径 valid_images = [] # 创建一个空列表来存储有效 label 的路径 valid_labels = [] # 遍历 images 文件夹下的所有图片 for image_name in os.listdir(image_dir): # 获取图片的完整路径 image_path = os.path.join(image_dir, image_name) # 获取图片文件的扩展名 ext = os.path.splitext(image_name)[-1] # 根据扩展名替换成对应的 label 文件名 label_name = image_name.replace(ext, ".txt") # 获取对应 label 的完整路径 label_path = os.path.join(label_dir, label_name) # 判断 label 是否存在 if not os.path.exists(label_path): # 删除图片 os.remove(image_path) print("deleted:", image_path) else: # 将图片路径添加到列表中 valid_images.append(image_path) # 将label路径添加到列表中 valid_labels.append(label_path) # print("valid:", image_path, label_path) # 遍历每个有效图片路径 for i in tqdm(range(len(valid_images))): image_path = valid_images[i] label_path = valid_labels[i] # 随机生成一个概率 r = random.random() # 判断图片应该移动到哪个文件夹 # train:valid:test = 7:2:1 if r < 0.1: # 移动到 test 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/test" elif r < 0.2: # 移动到 valid 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/valid" else: # 移动到 train 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/train" # 生成目标文件夹中图片的新路径 image_destination_path = os.path.join(destination, "images", os.path.basename(image_path)) # 移动图片到目标文件夹 os.rename(image_path, image_destination_path) # 生成目标文件夹中 label 的新路径 label_destination_path = os.path.join(destination, "labels", os.path.basename(label_path)) # 移动 label 到目标文件夹 os.rename(label_path, label_destination_path) print("valid images:", valid_images) #输出有效label路径列表 print("valid labels:", valid_labels)
时间: 2024-04-28 11:18:46 浏览: 136
这段代码主要是在处理 COCO 数据集中的图片和标签文件。通过遍历 images 文件夹下的所有图片,获取图片的完整路径和扩展名,根据扩展名替换成对应的 label 文件名,获取对应 label 的完整路径。然后判断 label 是否存在,如果不存在就删除对应的图片。如果存在,就将图片路径和 label 路径添加到 valid_images 和 valid_labels 列表中。
然后通过遍历每个有效图片路径,随机生成一个概率,判断图片应该移动到哪个文件夹(train/valid/test)。最后生成目标文件夹中图片的新路径和 label 的新路径,移动图片和 label 到目标文件夹中。
最后输出有效图片路径列表和有效标签路径列表。
相关问题
import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释
# 引入所需的库
import jittor as jt
import jrender as jr
jt.flags.use_cuda = 1 # 开启GPU加速
import os
import tqdm
import numpy as np
import imageio
import argparse
# 获取当前文件所在目录路径和数据目录路径
current_dir = os.path.dirname(os.path.realpath(__file__))
data_dir = os.path.join(current_dir, 'data')
def main():
# 创建命令行参数解析器
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--filename-input', type=str,
default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) # 输入文件路径
parser.add_argument('-o', '--output-dir', type=str,
default=os.path.join(data_dir, 'results/output_render')) # 输出文件路径
args = parser.parse_args()
# other settings
camera_distance = 2.732 # 相机距离
elevation = 30 # 抬高角度
azimuth = 0 # 方位角度
# load from Wavefront .obj file
mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # 从.obj文件载入模型
# create renderer with SoftRas
renderer = jr.Renderer(dr_type='softras') # 创建渲染器
os.makedirs(args.output_dir, exist_ok=True)
# draw object from different view
loop = tqdm.tqdm(list(range(0, 360, 4))) # 视角变换循环
writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') # 创建gif文件
imgs = []
from PIL import Image
for num, azimuth in enumerate(loop):
# rest mesh to initial state
mesh.reset_() # 重置模型状态
loop.set_description('Drawing rotation')
renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) # 设置相机位置和角度
rgb = renderer.render_mesh(mesh, mode='rgb') # 渲染模型
image = rgb.numpy()[0].transpose((1, 2, 0)) # 转置图片通道
writer.append_data((255*image).astype(np.uint8)) # 写入gif文件
writer.close()
# draw object from different sigma and gamma
loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) # 模糊循环
renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) # 设置相机位置和角度
writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') # 创建gif文件
for num, gamma_pow in enumerate(loop):
# rest mesh to initial state
mesh.reset_() # 重置模型状态
renderer.set_gamma(10**gamma_pow) # 设置gamma值
renderer.set_sigma(10**(gamma_pow - 1)) # 设置sigma值
loop.set_description('Drawing blurring')
images = renderer.render_mesh(mesh, mode='rgb') # 渲染模型
image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB]
writer.append_data((255*image).astype(np.uint8)) # 写入gif文件
writer.close()
# save to textured obj
mesh.reset_() # 重置模型状态
mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) # 保存模型
if __name__ == '__main__':
main()
data_dir = 'D:/wjd,这个路径下有八个标签,'Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'
好的,如果你的数据集路径下有8个标签('Ag', 'Al', 'Au', 'Cu', 'W', 'V', 'Mo', 'Ta'),你可以尝试以下代码:
```
import os
import shutil
# 原始数据集所在路径
data_dir = 'D:/wjd'
# 训练集和验证集所在路径
train_dir = 'D:/wjd/train'
val_dir = 'D:/wjd/val'
# 创建训练集和验证集文件夹
for label in os.listdir(data_dir):
os.makedirs(os.path.join(train_dir, label), exist_ok=True)
os.makedirs(os.path.join(val_dir, label), exist_ok=True)
# 遍历每个类别
for label in os.listdir(data_dir):
label_dir = os.path.join(data_dir, label)
# 获取该类别下所有图像文件
images = os.listdir(label_dir)
# 计算分割点
split_point = int(len(images) * 0.8)
# 将前80%的图像移动到训练集文件夹
for image in images[:split_point]:
src_path = os.path.join(label_dir, image)
dst_path = os.path.join(train_dir, label, image)
shutil.move(src_path, dst_path)
# 将后20%的图像移动到验证集文件夹
for image in images[split_point:]:
src_path = os.path.join(label_dir, image)
dst_path = os.path.join(val_dir, label, image)
shutil.move(src_path, dst_path)
```
这段代码首先创建每个类别的训练集和验证集文件夹。然后,遍历每个类别,获取该类别下所有图像文件,并计算分割点。接下来,将前80%的图像移动到训练集文件夹中,将后20%的图像移动到验证集文件夹中。最后,使用shutil库中的move函数将图像文件移动到目标路径。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
import requests import os import time import json from tqdm import tqdm import re def taopiaopiao(): headers = { 'user-agent': 'Mozilla/5.0 (Linux; Android 6.0; Nexus 5 Build/MRA58N) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.0.0 Mobile Safari/537.36 Edg/113.0.1774.57' } time.sleep(0.5) url = "https://dianying.taobao.com/showList.htm?spm=a1z21.6646273.city.2.4ed46d6ekOc3wH&n_s=new&city=310100" response = requests.get(url, headers=headers) html = response.text print("网页信息已获取…") time.sleep(0.5) destinationPath = "result.txt" fd = open(destinationPath, "w+", encoding='utf-8') fd.writelines(html) end = html.find('') if end != -1: html = html[:end] #print(html) fd.close() s = '<img width="160" height="224" data-src="(.*?)" src=' + \ '.*?(.+?).*?(\d.\d)?' + \ ".*?导演:(.*?)" + ".*?主演:(.*?)" + ".*?类型:(.*?)" + \ ".*?地区:(.*?)" + ".*?语言:(.*?)" + ".*?片长:(.*?)" + \ ".*?" pattern = re.compile(s, re.S) items = re.findall(pattern, html) #print(items) destinationPath = "items.json" fd = open(destinationPath, "w+", encoding='utf-8') json.dump(items, fd) fd.close() dir_name = "./images" if not os.path.exists(dir_name): os.mkdir(dir_name) cnt = 0 for item in tqdm(items): url = item[0] file_name = str(cnt) + ".jpg" cnt += 1 response = requests.get(url, headers=headers) with open(dir_name + "/" + file_name, 'wb') as f: f.write(response.content) info = "图片文件: {0:25}{1}".format(file_name, " 成功下载...") print(info) return items if __name__ == "__main__": taopiaopiao()
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)