import os import random from tqdm import tqdm # 指定 images 文件夹路径 image_dir = "C:/Users/86152/Desktop/coco128/images/train2017" # 指定 labels 文件夹路径 label_dir = "C:/Users/86152/Desktop/coco128/labels/train2017" # 创建一个空列表来存储有效图片的路径 valid_images = [] # 创建一个空列表来存储有效 label 的路径 valid_labels = [] # 遍历 images 文件夹下的所有图片 for image_name in os.listdir(image_dir): # 获取图片的完整路径 image_path = os.path.join(image_dir, image_name) # 获取图片文件的扩展名 ext = os.path.splitext(image_name)[-1] # 根据扩展名替换成对应的 label 文件名 label_name = image_name.replace(ext, ".txt") # 获取对应 label 的完整路径 label_path = os.path.join(label_dir, label_name) # 判断 label 是否存在 if not os.path.exists(label_path): # 删除图片 os.remove(image_path) print("deleted:", image_path) else: # 将图片路径添加到列表中 valid_images.append(image_path) # 将label路径添加到列表中 valid_labels.append(label_path) # print("valid:", image_path, label_path) # 遍历每个有效图片路径 for i in tqdm(range(len(valid_images))): image_path = valid_images[i] label_path = valid_labels[i] # 随机生成一个概率 r = random.random() # 判断图片应该移动到哪个文件夹 # train:valid:test = 7:2:1 if r < 0.1: # 移动到 test 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/test" elif r < 0.2: # 移动到 valid 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/valid" else: # 移动到 train 文件夹 destination = "C:/Users/86152/PycharmProjects/pythonProject/ultralytics-main/datasets/train" # 生成目标文件夹中图片的新路径 image_destination_path = os.path.join(destination, "images", os.path.basename(image_path)) # 移动图片到目标文件夹 os.rename(image_path, image_destination_path) # 生成目标文件夹中 label 的新路径 label_destination_path = os.path.join(destination, "labels", os.path.basename(label_path)) # 移动 label 到目标文件夹 os.rename(label_path, label_destination_path) print("valid images:", valid_images) #输出有效label路径列表 print("valid labels:", valid_labels)
时间: 2024-04-28 09:18:46 浏览: 141
这段代码主要是在处理 COCO 数据集中的图片和标签文件。通过遍历 images 文件夹下的所有图片,获取图片的完整路径和扩展名,根据扩展名替换成对应的 label 文件名,获取对应 label 的完整路径。然后判断 label 是否存在,如果不存在就删除对应的图片。如果存在,就将图片路径和 label 路径添加到 valid_images 和 valid_labels 列表中。
然后通过遍历每个有效图片路径,随机生成一个概率,判断图片应该移动到哪个文件夹(train/valid/test)。最后生成目标文件夹中图片的新路径和 label 的新路径,移动图片和 label 到目标文件夹中。
最后输出有效图片路径列表和有效标签路径列表。
阅读全文