nameerror: name 'name' is not defined
时间: 2023-04-21 13:01:15 浏览: 99
这是一个错误提示,意思是“名称错误:名称'name'未定义”。这通常是因为在代码中使用了一个未定义的变量或函数名。要解决这个错误,需要检查代码中是否存在拼写错误或语法错误,并确保所有变量和函数都已正确定义。
相关问题
NameError: name 'requests' is not definedNameError: name 'requests' is not defined NameError: name 'requests' is not defined
这个错误通常是由于没有导入requests模块而导致的。在使用requests模块之前,您需要确保已经正确导入了该模块。
例如,在Python中,您可以使用以下语句导入requests模块:
```python
import requests
```
如果您已经导入了requests模块但仍然出现此错误,请确保您的代码中没有拼写错误,并且在导入模块后确保代码块或函数正确缩进。
如果问题仍然存在,请提供更多的代码细节,以便我能够更好地帮助您解决问题。
上述代码分别报错:NameError: name 'np' is not defined,NameError: name 'w' is not defined,NameError: name 'loss_history' is not defined,请解决
上述错误是因为你在代码中引用了未定义的变量。下面是修正后的代码,包含了对numpy、初始权重向量w以及历史损失loss_history的初始化:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
data = pd.read_csv('BostonHousingData.csv')
X = data.drop('MEDV', axis=1) # 特征矩阵
y = data['MEDV'] # 目标变量
# 初始化参数
n_features = X.shape[1]
w = np.random.randn(n_features) # 初始化随机权重
learning_rate = 0.01
epochs = 1000
# 手动实现梯度下降并记录历史损失
def gradient_descent(X, y, w, learning_rate, epochs):
m = len(y)
loss_history = []
for epoch in range(epochs):
y_pred = np.dot(X, w)
loss = (1/m) * np.mean((y - y_pred)**2)
dw = -(2/m) * np.dot(X.T, (y - y_pred))
w -= learning_rate * dw
loss_history.append(loss)
return w, loss_history
w, loss_history = gradient_descent(X, y, w, learning_rate, epochs)
# 可视化结果
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.plot(loss_history)
plt.title('Loss Function vs. Epochs')
plt.subplot(1, 2, 2)
plt.scatter(range(len(y)), y, label='Actual Prices')
plt.plot(range(len(y)), np.dot(X, w), label='Predicted Prices', color='red')
plt.legend()
plt.title('Actual vs. Predicted Prices (50 Samples)')
plt.xlabel('Sample Index')
plt.ylabel('Price')
plt.tight_layout()
plt.show()
```
现在,代码应该不会报错了。注意这里的`np.random.randn(n_features)`用于初始化随机权重,以便在第一次运行时有初始值。如果你之前已经运行过一次并且得到了w,那么再次运行时需要保留w的值,而不是每次都重新随机初始化。
阅读全文