采用粒子群算法求解旅行商问题 matlab源码
时间: 2023-12-03 21:00:38 浏览: 97
粒子群算法(PSO)是一种基于群体智能的优化算法,常用于求解旅行商问题。在Matlab中,我们可以使用以下源码实现。
```matlab
function [best_path, best_distance] = tsp_pso(points, swarm_size, max_iterations)
num_points = size(points, 1);
c1 = 2;
c2 = 2;
inertia_weight = 1;
max_velocity = 0.1;
% 初始化粒子位置和速度
positions = rand(swarm_size, num_points);
velocities = rand(swarm_size, num_points) * max_velocity;
personal_best = positions;
global_best = inf;
global_best_position = zeros(1, num_points);
for i=1:max_iterations
for j=1:swarm_size
distance = calculate_distance(points, positions(j, :));
if distance < calculate_distance(points, personal_best(j, :))
personal_best(j, :) = positions(j, :);
end
if distance < global_best
global_best = distance;
global_best_position = positions(j, :);
end
end
r1 = rand(swarm_size, num_points);
r2 = rand(swarm_size, num_points);
velocities = inertia_weight * velocities + c1 * r1 .* (personal_best - positions) + c2 * r2 .* (global_best_position - positions);
velocities(velocities > max_velocity) = max_velocity;
velocities(velocities < -max_velocity) = -max_velocity;
positions = positions + velocities;
end
best_path = global_best_position;
best_distance = global_best;
end
function distance = calculate_distance(points, path)
distance = 0;
num_points = size(points, 1);
for i=1:num_points-1
distance = distance + norm(points(path(i), :) - points(path(i+1), :));
end
distance = distance + norm(points(path(end), :) - points(path(1), :));
end
```
在这个源码中,我们首先定义了一个tsp_pso函数来实现粒子群算法。该函数接受旅行商问题的点集、粒子群大小和最大迭代次数作为输入,并输出最佳路径和最短距离。我们使用随机初始化粒子位置和速度,并在每次迭代中更新粒子的位置和速度,直到达到最大迭代次数。粒子的个体最优和全局最优都被更新并用来指导粒子搜索的方向。最后我们定义了一个辅助函数calculate_distance来计算路径的总长度。
以上就是使用粒子群算法求解旅行商问题的Matlab源码。
阅读全文