麻雀算法优化lstmpython代码
时间: 2023-07-01 11:28:16 浏览: 121
下面是一个使用麻雀算法优化LSTM模型的Python代码示例:
```python
import random
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
# 定义LSTM模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(LSTMModel, self).__init__()
self.lstm = nn.LSTM(input_size, hidden_size)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
lstm_out, _ = self.lstm(x)
output = self.fc(lstm_out[-1])
return output
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam
# 定义麻雀算法
def mahjong_algorithm(params, num_games, num_simulations):
best_params = params
best_score = -1
for i in range(num_games):
new_params = [random.uniform(0, 1) * param for param in params] # 对参数进行随机扰动
score = 0
for j in range(num_simulations):
# 构造LSTM模型
input_size = int(new_params[0] * 100) + 1
hidden_size = int(new_params[1] * 100) + 1
output_size = 2
model = LSTMModel(input_size, hidden_size, output_size)
# 训练模型
optimizer = optimizer(model.parameters(), lr=new_params[2])
for epoch in range(new_params[3]):
for data, label in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
# 在验证集上测试模型性能
correct = 0
total = 0
with torch.no_grad():
for data, label in val_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
accuracy = correct / total
score += accuracy
# 计算平均分数
score /= num_simulations
# 更新最佳参数和最高分数
if score > best_score:
best_params = new_params
best_score = score
return best_params
# 设置超参数的初始值
params = [0.5, 0.5, 0.001, 10]
# 使用麻雀算法优化超参数
best_params = mahjong_algorithm(params, 10, 10)
# 使用最佳参数训练LSTM模型
input_size = int(best_params[0] * 100) + 1
hidden_size = int(best_params[1] * 100) + 1
output_size = 2
model = LSTMModel(input_size, hidden_size, output_size)
optimizer = optimizer(model.parameters(), lr=best_params[2])
for epoch in range(best_params[3]):
for data, label in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, label)
loss.backward()
optimizer.step()
# 在测试集上测试模型性能
correct = 0
total = 0
with torch.no_grad():
for data, label in test_loader:
output = model(data)
_, predicted = torch.max(output.data, 1)
total += label.size(0)
correct += (predicted == label).sum().item()
accuracy = correct / total
print("Test accuracy: %.2f%%" % (accuracy * 100))
```
在上面的示例代码中,我们首先定义了一个LSTM模型,并使用麻雀算法优化其超参数。然后,使用最佳参数训练LSTM模型,并在测试集上测试其性能。通过使用麻雀算法优化LSTM模型的超参数,可以提高模型的性能,并获得更好的结果。
阅读全文