name 'pd_datetime' is not defined
时间: 2023-09-06 13:11:30 浏览: 147
It seems like you are trying to use the function pd_datetime() but the name 'pd_datetime' is not defined. This error message usually occurs when you have not imported the necessary libraries or there is a typo in the function name. To use pd_datetime(), you need to import the pandas library using the following code:
```
import pandas as pd
```
Then you can use the pd_datetime() function to convert a string to a datetime object. For example:
```
date_string = '2021-03-23'
date_object = pd_datetime(date_string)
```
This will convert the string '2021-03-23' to a datetime object.
相关问题
Traceback (most recent call last): File "task1/test1.py", line 32, in <module> choose_data=tk.choose_data(data) File "/data/workspace/myshixun/task1/task1.py", line 16, in choose_data data_time=pd_datetime[date.time] NameError: name 'pd_datetime' is not defined我该怎么修改
这个错误提示是因为代码中使用了一个不存在的变量`pd_datetime`。我猜测你的代码中想要使用`pandas`库中的`to_datetime`函数将时间字符串转换为`datetime`类型,并且这个函数名字写错了。你需要将`pd_datetime`改成`pd.to_datetime`,并且将`date.time`改成`data['time']`,如下所示:
```
import pandas as pd
import numpy as np
def choose_data(data):
# 选择变量'user_id', 'time', 'model_id', 'type', 'cate', 'brand',
# 选取time在2016-02-01及以后的数据(包含2016-02-01)且type=6,
# 数据类型如下:
# user_id sku_id time model_id type cate brand
# 0 266079 138778 2016-01-31 23:59:02 NaN 1 8 403
# 1 266079 138778 2016-01-31 23:59:03 0.0 6 8 403
# 2 200719 61226 2016-01-31 23:59:07 NaN 1 8 30
# 3 200719 61226 2016-01-31 23:59:08 0.0 6 8 30
# 4 263587 72348 2016-01-31 23:59:08 NaN 1 5 159
########## Begin ##########
data['time'] = pd.to_datetime(data['time']) # 转换时间格式为datetime类型
data = data[(data['time'] >= '2016-02-01') & (data['type'] == 6)]
########## End ##########
return data
def sample_data(data):
# 使用pd.DataFrame.sample函数进行随机抽样,不放回的随机抽取5000个样本,
# 数据结构如下:
# user_id sku_id time model_id type cate brand
# 0 266079 138778 2016-01-31 23:59:02 NaN 1 8 403
# 1 266079 138778 2016-01-31 23:59:03 0.0 6 8 403
# 2 200719 61226 2016-01-31 23:59:07 NaN 1 8 30
# 3 200719 61226 2016-01-31 23:59:08 0.0 6 8 30
# 4 263587 72348 2016-01-31 23:59:08 NaN 1 5 159
########## Begin ##########
data = data.sample(n=5000, replace=False)
########## End ##########
return data
def clear_data(df):
# 根据提示补全下列操作,请在已有的代码上添加操作,
# 不要改动原有的变量名,案例数据结构如下:
# col1 col2 col3 col4
# 0 -1.055712 -0.196175 -0.813023 -0.806857
# 1 0.972878 NaN -1.722135 -0.638893
# 2 0.444641 -0.189607 -0.199307 3.496211
# 3 0.273065 -1.970887 0.954170 0.823823
# 4 0.729248 -1.036644 1.398436 NaN
# 5 -0.323439 0.208351 -0.429920 -0.175628
########## Begin ##########
nan_result_pd1 = df.dropna()
########## End ##########
return nan_result_pd1
```
代码#合并训练数据和测试数据 datal = pd.concat([data_train ,data_test],axis =0) #处理 data _ received 属性、 date 属性 data1['date_received ']=data1['date_received'].astype('str'). apply ( lambda x : x . split ('.')[0]) datal [' date_received ']= pd . to_datetime (data1[' date_received ']) datal [' date ']= datal (' date '). astype (' str '). apply ( lambda x : x . split ('.')[0]) datal [' date ']= pd . to_datetime ( datal [' date '])报错name 'data1' is not defined解决
在代码中,第二行中的`data1`没有被定义,因此会报错。可以将第二行的`data1`改为`datal`,因为上一行已经定义了`datal`作为合并后的数据集。修改后的代码如下:
```python
# 合并训练数据和测试数据
datal = pd.concat([data_train, data_test], axis=0)
# 处理 data_received 属性、date属性
datal['date_received'] = datal['date_received'].astype('str').apply(
lambda x: x.split('.')[0])
datal['date_received'] = pd.to_datetime(datal['date_received'])
datal['date'] = datal['date'].astype('str').apply(
lambda x: x.split('.')[0])
datal['date'] = pd.to_datetime(datal['date'])
```
阅读全文