修改上面的程序,plot时候,使用df.iloc[3:,0]作为index,为其余的列df.iloc[3:,1:]绘制曲线

时间: 2024-03-28 17:42:16 浏览: 41
好的,根据您的要求,这里是修改后的程序: ```python import pandas as pd import matplotlib.pyplot as plt # 读取数据 df = pd.read_csv('data.csv') # 绘制曲线 plt.figure(figsize=(8, 6)) plt.plot(df.iloc[3:, 0], df.iloc[3:, 1:]) plt.legend(df.columns[1:]) plt.xlabel(df.columns[0]) plt.ylabel('Value') plt.title('Data Visualization') plt.show() ``` 这个程序会使用 `df.iloc[3:,0]` 作为 x 轴坐标,使用 `df.iloc[3:,1:]` 中的其他列作为 y 轴坐标,绘制出多条曲线。`plt.legend(df.columns[1:])` 会自动为每条曲线添加图例,`plt.xlabel(df.columns[0])` 和 `plt.ylabel('Value')` 会设置 x 轴和 y 轴的标签,`plt.title('Data Visualization')` 则会设置图表的标题。最后调用 `plt.show()` 显示图表。
相关问题

ax.plot(list(df.iloc[:,0]), list(df[col]),label=col)

这段代码使用了matplotlib库中的plot函数用于绘制折线图。其中,list(df.iloc[:,0])表示取df数据集中第一列的所有值,list(df[col])表示取df数据集中名为col的列的所有值。同时,label=col表示给绘制出来的折线图添加一个标签,标签的内容为col。最后,ax.plot()函数将绘制的折线图添加到ax对象中。

解释一下这段代码import pandas as pd import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties df = pd.read_csv(data1.csv", encoding="gbk", delimiter=",") A = df.iloc[:,0] D = df.iloc[:,3] E = df.iloc[:,4]/120 plt.rcParams['font.sans-serif']=['SimHei'] plt.plot(A, D, color='red', linestyle='-', linewidth=2, label='D数据') plt.xlabel('日期') plt.ylabel('销售额') plt.title('A列和D列数据关联折线图') plt.plot(A, E, color='green', linestyle='--', linewidth=2, label='E数据') plt.xlabel('日期') plt.ylabel('销售额(除以120)') plt.title('A列和E列数据关联折线图') plt.legend(loc='best') plt.show()

这段代码是一个Python脚本,它使用pandas和matplotlib库来读取一个名为"data1.csv"的csv文件,并将其中的数据用两个折线图进行可视化展示。 首先,该脚本导入了三个库:pandas用于读取数据,matplotlib.pyplot用于绘制图形,matplotlib.font_manager用于指定字体。 然后,该脚本通过调用pd.read_csv()函数来读取"data1.csv"文件,其中encoding="gbk"表示该文件是用gbk编码的,delimiter=","表示该文件使用逗号作为分隔符。读取数据后,通过df.iloc[:,0]、df.iloc[:,3]、df.iloc[:,4]分别获取data1.csv文件中第0列、第3列和第4列的数据,分别存储在变量A、D和E中。 接下来,该脚本通过调用plt.rcParams['font.sans-serif']=['SimHei']来指定绘图时所使用的字体为SimHei,然后通过plt.plot()函数分别绘制了A和D列数据的折线图和A和E列数据的折线图,其中color、linestyle和linewidth分别表示线条的颜色、样式和宽度,label表示每条线的标签,xlabel和ylabel分别表示X轴和Y轴的标签,title表示整个图形的标题。最后,调用plt.legend()函数添加图例并展示图形。
阅读全文

相关推荐

import numpy as np import pandas as pd import matplotlib.pyplot as plt import BPNN from sklearn import metrics from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error #导入必要的库 df1=pd.read_excel(r'D:\Users\Desktop\大数据\44.xls',0) df1=df1.iloc[:,:] #进行数据归一化 from sklearn import preprocessing min_max_scaler = preprocessing.MinMaxScaler() df0=min_max_scaler.fit_transform(df1) df = pd.DataFrame(df0, columns=df1.columns) x=df.iloc[:,:4] y=df.iloc[:,-1] #划分训练集测试集 cut=4#取最后cut=30天为测试集 x_train, x_test=x.iloc[4:],x.iloc[:4]#列表的切片操作,X.iloc[0:2400,0:7]即为1-2400行,1-7列 y_train, y_test=y.iloc[4:],y.iloc[:4] x_train, x_test=x_train.values, x_test.values y_train, y_test=y_train.values, y_test.values #神经网络搭建 bp1 = BPNN.BPNNRegression([4, 16, 1]) train_data=[[sx.reshape(4,1),sy.reshape(1,1)] for sx,sy in zip(x_train,y_train)] test_data = [np.reshape(sx,(4,1))for sx in x_test] #神经网络训练 bp1.MSGD(train_data, 1000, len(train_data), 0.2) #神经网络预测 y_predict=bp1.predict(test_data) y_pre = np.array(y_predict) # 列表转数组 y_pre=y_pre.reshape(4,1) y_pre=y_pre[:,0] #画图 #展示在测试集上的表现 draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_pre)],axis=1); draw.iloc[:,0].plot(figsize=(12,6)) draw.iloc[:,1].plot(figsize=(12,6)) plt.legend(('real', 'predict'),loc='upper right',fontsize='15') plt.title("Test Data",fontsize='30') #添加标题 #输出精度指标 print('测试集上的MAE/MSE') print(mean_absolute_error(y_pre, y_test)) print(mean_squared_error(y_pre, y_test) ) mape = np.mean(np.abs((y_pre-y_test)/(y_test)))*100 print('=============mape==============') print(mape,'%') # 画出真实数据和预测数据的对比曲线图 print("R2 = ",metrics.r2_score(y_test, y_pre)) # R2 运行上述程序。在下面这一步中draw=pd.concat([pd.DataFrame(y_test),pd.DataFrame(y_pre)],axis=1);我需要将归一化的数据变成真实值,输出对比图,该怎么修改程序

怎么样把import tkinter as tk import csv from tkinter import filedialog root = tk.Tk() root.title("数据科学基础") root.geometry("800x600") #修改字体 font = ("楷体", 16) root.option_add("*Font", font) #修改背景颜色 root.configure(bg="pink") def import_csv_data(): global file_path file_path = filedialog.askopenfilename() # 读取CSV文件并显示在Text控件上 data = pd.read_csv(file_path) # 获取前5行数据 top_5 = data.head() # 将前5行数据插入到Text控件 #txt_data.delete('1.0'.tk.END) txt_data.insert(tk.END, top_5) #创建导入按钮和文本框 btn_import = tk.Button(root,text="导入CSV文件",command=import_csv_data) btn_import.pack() txt_data = tk.Text(root) txt_data.pack() root.mainloop()怎么样把这段代码和import pandas as pd import matplotlib.pyplot as plt from tkinter import * from tkinter import filedialog from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # 创建 Tkinter 窗口 root = Tk() # 设置窗口标题 root.title("CSV文件分析") # 创建标签 label = Label(root, text="请选择要导入的CSV文件:") label.pack() # 创建按钮 button = Button(root, text="选择文件") # 创建事件处理函数 def choose_file(): # 弹出文件选择对话框 file_path = filedialog.askopenfilename() # 读取CSV文件 df = pd.read_csv(file_path) # 创建标签 label2 = Label(root, text="请选择要显示的图像:") label2.pack() # 创建按钮 button1 = Button(root, text="散点图") button1.pack() button2 = Button(root, text="折线图") button2.pack() button3 = Button(root, text="柱状图") button3.pack() # 创建图形容器 fig_container = Frame(root) fig_container.pack() # 创建事件处理函数 def show_scatter(): # 获取数据 x = df.iloc[:, 0] y = df.iloc[:, 1] # 绘制散点图 fig = plt.figure(figsize=(4, 4)) plt.scatter(x, y) # 将图形显示在容器中 canvas = FigureCanvasTkAgg(fig, master=fig_container) canvas.draw() canvas.get_tk_widget().pack() def show_line(): # 获取数据 x = df.iloc[:, 0] y = df.iloc[:, 1] # 绘制折线图 fig = plt.figure(figsize=(4, 4)) plt.plot(x, y) # 将图形显示在容器中 canvas = FigureCanvasTkAgg(fig, master=fig_container) canvas.draw() canvas.get_tk_widget().pack() def show_bar(): # 获取数据 x = df.iloc[:, 0] y = df.iloc[:, 1] # 绘制柱状图 fig = plt.figure(figsize=(4, 4)) plt.bar(x, y) # 将图形显示在容器中 canvas = FigureCanvasTkAgg(fig, master=fig_container) canvas.draw() canvas.get_tk_widget().pack() # 绑定事件处理函数 button1.config(command=show_scatter) button2.config(command=show_line) button3.config(command=show_bar) # 绑定事件处理函数 button.config(command=choose_file) button.pack() # 运行窗口 root.mainloop()这段代码结合起来一起实现

import akshare as ak import numpy as np import pandas as pd import random import matplotlib.pyplot as plt class StockTradingEnv: def __init__(self): self.df = ak.stock_zh_a_daily(symbol='sh000001', adjust="qfq").iloc[::-1] self.observation_space = self.df.shape[1] self.action_space = 3 self.reset() def reset(self): self.current_step = 0 self.total_profit = 0 self.done = False self.state = self.df.iloc[self.current_step].values return self.state def step(self, action): assert self.action_space.contains(action) if action == 0: # 买入 self.buy_stock() elif action == 1: # 卖出 self.sell_stock() else: # 保持不变 pass self.current_step += 1 if self.current_step >= len(self.df) - 1: self.done = True else: self.state = self.df.iloc[self.current_step].values reward = self.get_reward() self.total_profit += reward return self.state, reward, self.done, {} def buy_stock(self): pass def sell_stock(self): pass def get_reward(self): pass class QLearningAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.epsilon = 1.0 self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.1 self.discount_factor = 0.99 self.q_table = np.zeros((self.state_size, self.action_size)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) else: return np.argmax(self.q_table[state, :]) def learn(self, state, action, reward, next_state, done): target = reward + self.discount_factor * np.max(self.q_table[next_state, :]) self.q_table[state, action] = (1 - self.learning_rate) * self.q_table[state, action] + self.learning_rate * target if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) for episode in range(1000): state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) agent.learn(state, action, reward, next_state, done) state = next_state if episode % 10 == 0: print("Episode: %d, Total Profit: %f" % (episode, env.total_profit)) agent.save_model("model-%d.h5" % episode) def plot_profit(env, title): plt.figure(figsize=(12, 6)) plt.plot(env.df.index, env.df.close, label="Price") plt.plot(env.df.index, env.profits, label="Profits") plt.legend() plt.title(title) plt.show() env = StockTradingEnv() agent = QLearningAgent(env.observation_space, env.action_space) agent.load_model("model-100.h5") state = env.reset() done = False while not done: action = agent.act(state) next_state, reward, done, _ = env.step(action) state = next_state plot_profit(env, "QLearning Trading Strategy")优化代码

最新推荐

recommend-type

白色大气风格的旅游酒店企业网站模板.zip

白色大气风格的旅游酒店企业网站模板.zip
recommend-type

python实现用户注册

python实现用户注册
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单片机编程实战】:掌握流水灯与音乐盒同步控制的高级技巧

![单片机编程](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-48cf6abe199bab09d31c122e1f49cea4.png) # 摘要 单片机作为电子技术领域的基础组件,广泛应用于各类控制项目。本文从基础开始,详细探讨了单片机在流水灯和音乐盒项目中的应用原理,并分析了如何实现这两个功能的同步控制。通过对硬件和软件层面的深入剖析,本文提供了一系列实践操作和高级技巧,旨在提升流水灯与音乐盒同步控制的性能和效率。通过本研究,读者将能够更好地理解和掌握单片机在复杂控制系统中的应用,进而创新开发更多
recommend-type

java 号码后四位用‘xxxx’脱敏

在Java中,对电话号码后四位进行脱敏通常是为了保护用户隐私。你可以通过字符串截取和替换的方式来实现这个功能。下面是一个简单的示例: ```java public class Main { public static void main(String[] args) { String phoneNumber = "1234567890"; // 假设原始手机号 int startCutOff = phoneNumber.length() - 4; // 要开始切割的位置是后四位的起始位置 String maskedNumber = ph