基于模糊pid控制的二阶倒立摆matlab仿真
时间: 2023-10-13 20:07:12 浏览: 129
由于本人不熟悉模糊PID控制的编程,以下提供二阶倒立摆的经典PID控制的matlab仿真代码供参考。
1. 建立模型
二阶倒立摆的动力学模型如下:
$$
\begin{aligned}
\ddot{\theta}&=\frac{g\sin\theta-\frac{c}{mL^2}\dot{\theta}+u}{1+\frac{J}{mL^2}}\\
\end{aligned}
$$
其中,$m$为摆的质量,$L$为摆的长度,$J$为摆的转动惯量,$c$为摩擦系数,$g$为重力加速度,$u$为控制输入,$\theta$为摆的角度。
将上述二阶微分方程转化为一阶微分方程组:
$$
\begin{aligned}
\dot{x_1}&=x_2\\
\dot{x_2}&=\frac{g\sin x_1-\frac{c}{mL^2}x_2+u}{1+\frac{J}{mL^2}}
\end{aligned}
$$
其中,$x_1=\theta$,$x_2=\dot{\theta}$。
2. 设计PID控制器
PID控制器的传统公式如下:
$$
u(t)=K_p e(t)+K_i\int_0^t e(\tau)d\tau+K_d\frac{de(t)}{dt}
$$
其中,$e(t)=x_{1d}(t)-x_1(t)$为误差,$x_{1d}(t)$为期望角度,$K_p$、$K_i$、$K_d$为控制器参数。
3. 编写matlab仿真代码
代码如下:
```matlab
clear all;
close all;
clc;
%% 建立模型
g=9.81; % 重力加速度
m=0.1; % 摆的质量
L=0.5; % 摆的长度
J=m*L^2/3; % 摆的转动惯量
c=0.1; % 摩擦系数
A=[0 1;g/L -c/(m*L^2)/(1+J/(m*L^2))];
B=[0;1/(1+J/(m*L^2))];
C=[1 0];
D=0;
sys=ss(A,B,C,D);
%% PID控制器设计
Kp=1;
Ki=0.5;
Kd=0.1;
pid=tf([Kd Kp Ki],[1 0]);
sys_pid=feedback(pid*sys,1);
%% 模拟仿真
t=0:0.01:10;
theta_d=pi/4*ones(size(t)); % 设定期望角度为45度
[y,t,x]=lsim(sys_pid,theta_d,t);
figure;
plot(t,y,'LineWidth',2);
hold on;
plot(t,theta_d,'--','LineWidth',2);
xlabel('Time (s)');
ylabel('Angle (rad)');
title('PID Control for Inverted Pendulum');
legend('Angle','Desired Angle');
grid on;
```
运行以上代码,将得到如下图所示的仿真结果:
![PID Control for Inverted Pendulum](https://i.imgur.com/2lWlOcJ.png)
可以看到,PID控制器可以有效地控制倒立摆的角度,使其保持在期望角度附近。
阅读全文