s_left_2 = conv(s_left_2,conv_t(5,:)); s_right_2 = conv(s_right_2,conv_t(5,:)); s_left_2 = s_left_2(1+wid:end-wid); s_right_2 = s_right_2(1+wid:end-wid); power_s = Count(s_left_2(1,:)); power_mult = power_s / power_xr; s_left_2 = s_left_2 / (power_mult)^0.5; s_right_2 = s_right_2 / (power_mult)^0.5;
时间: 2023-12-06 16:42:01 浏览: 72
这段代码看起来是对信号进行卷积、裁剪和归一化处理的过程。
首先,`conv` 函数对 `s_left_2` 和 `s_right_2` 进行卷积操作,`conv_t` 是卷积核。然后,信号 `s_left_2` 和 `s_right_2` 的两端各去掉 `wid` 个点,相当于将信号裁剪了一下。接着,计算 `s_left_2` 第一行元素的能量值 `power_s`,然后根据 `s_left_2` 的能量值与 `power_xr` 的比值,计算归一化系数 `power_mult`。最后,将 `s_left_2` 和 `s_right_2` 分别除以 `power_mult` 的平方根,进行归一化处理。
总之,这段代码的作用是对信号进行卷积、裁剪和归一化处理,以便后续的处理或分析。
相关问题
while(snr_t < 46 ) %迭代训练 s_left_0 = [fill,soud_left_d,fill]; s_right_0 = [fill,soud_right_d,fill]; s_left_1 = ResBlock(s_left_0,conv_t(2,:),conv_t(3,:)); s_right_1 = ResBlock(s_right_0,conv_t(2,:),conv_t(3,:)); s_left_1 = conv(s_left_1,conv_t(4,:)); s_right_1 = conv(s_right_1,conv_t(4,:)); s_left_2 = s_left_0(1+wid:end-wid) + s_left_1(1+4wid:end-4wid) * w_t; s_right_2 = s_right_0(1+wid:end-wid) + s_right_1(1+4wid:end-4wid) * w_t; s_left_2 = PixelShuffle(s_left_2,conv_t(6:21,:)); s_right_2 = PixelShuffle(s_right_2,conv_t(6:21,:)); s_left_2 = conv(s_left_2,conv_t(5,:)); s_right_2 = conv(s_right_2,conv_t(5,:)); s_left_2 = s_left_2(1+wid:end-wid); s_right_2 = s_right_2(1+wid:end-wid); power_s = Count(s_left_2(1,:)); power_mult = power_s / power_xr; s_left_2 = s_left_2 / (power_mult)^0.5; s_right_2 = s_right_2 / (power_mult)^0.5; temp = s_left_2 - soud_left_t; loss_num = LossCount(temp,soud_left); diff = Variance(temp,soud_left); snr = psnr(temp,soud_left);
这段代码的作用是对语音信号进行迭代训练和处理,希望获得更高的信噪比(SNR)。具体来说,它首先将输入的左右声道信号进行填充,然后通过ResBlock函数进行残差块的处理。接着,通过卷积操作对信号进行处理,并使用PixelShuffle函数对信号进行下采样。最后,通过计算信号的功率、多项式系数等参数,对信号进行归一化处理,并计算损失函数、方差和信噪比等指标。这个过程会不断迭代,直到信噪比达到指定的阈值。
while(snr_t < 46 ) %迭代训练 % s_left_0 = conv(soud_left_d,conv_t(1,:)); % s_right_0 = conv(soud_right_d,conv_t(1,:)); s_left_0 = [fill,soud_left_d,fill]; s_right_0 = [fill,soud_right_d,fill]; s_left_1 = ResBlock(s_left_0,conv_t(2,:),conv_t(3,:)); s_right_1 = ResBlock(s_right_0,conv_t(2,:),conv_t(3,:)); s_left_1 = conv(s_left_1,conv_t(4,:)); s_right_1 = conv(s_right_1,conv_t(4,:));
这段代码是一个迭代训练的过程,其中使用了卷积操作(conv)和残差块(ResBlock)。具体地,代码中将输入信号soud_left_d和soud_right_d进行填充(fill),然后分别通过卷积模板(conv_t)进行卷积操作。接着,将卷积输出通过残差块进行处理,最后再次进行卷积操作,并计算信噪比(snr_t)。当信噪比达到一定阈值(46)时,迭代训练结束。
阅读全文
相关推荐









