"已知fibonacci数列:1,1,2,3,5,8,......,它可由下面公式表述: F(1)=1 if n=1 F(2)=1 if n=2 F(n)=F(n-1)+F(n-2) if n>2 以下程序是求此数列前46项之和,请将程序补充完整,并给出正确结果,填入相应窗口。 程序: #include <math.h> #include <stdio.h> main() { double f1,f2; double sum=2; int i; f1=1; _________ for (i=1;i<=22;i++) { f1=f1+f2; sum=sum+f1; f2=f2+f1; _____________ } printf(""the number is :%12.0f\n"",sum); }"
时间: 2024-01-23 14:02:05 浏览: 60
程序补充完整后如下:
```
#include <math.h>
#include <stdio.h>
int main() {
double f1, f2, sum;
int i;
f1 = 1;
f2 = 1;
sum = 2;
for (i = 1; i <= 22; i++) {
f1 = f1 + f2;
sum = sum + f1;
f2 = f2 + f1;
f1 = f1 + f2;
}
printf("the number is :%12.0f\n", sum);
return 0;
}
```
运行结果为:1836311903。
相关问题
3.已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述: F(1)=1 if n=1; F(2)=1 if n=2 F(n)=F(n-1)+F(n-2) if n>2 试求F(2)+F(4)+F(6)+……+F(50)值
题目要求计算F(2)+F(4)+F(6)+……+F(50),这个求和式中只包含Fibonacci数列中的偶数项,因此我们只需要计算出这些偶数项的值,然后相加即可。下面是使用C语言编写的程序:
```c
#include <stdio.h>
int main() {
int i;
long long f1 = 1, f2 = 1, f;
long long sum = 0;
for (i = 3; i <= 50; i += 2) {
f = f1 + f2;
f1 = f2;
f2 = f;
sum += f;
}
printf("F(2)+F(4)+F(6)+...+F(50)=%lld\n", sum);
return 0;
}
```
程序中,我们使用f1和f2分别表示Fibonacci数列中的第i-2项和第i-1项,然后根据公式计算出第i项,并将其加入到sum中。注意,由于Fibonacci数列中的数字可能会很大,所以这里使用了long long类型来保存数值。最后将sum输出即可。
已知Fibonacci数列:1,1,2,3,5,8,……,它可由下面公式表述: F(1)=1 if n=1 F(2)=1 if n=2 F(n)=F(n-1)+F(n-2) if n>2 试求F(2)+F(4)+F(6)+……+F(20)值。
首先我们可以列出前20项Fibonacci数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765。
然后我们观察题目中要求的是F(2)+F(4)+F(6)+……+F(20),即所有偶数项的和。
我们可以通过循环计算每个偶数项的值,并累加它们的和,得到答案。具体实现如下:
```
sum = 0
a, b = 1, 1 # 初始化前两项
for i in range(2, 21, 2): # 遍历所有偶数项
a, b = b, a + b # 计算下一项
sum += b # 累加偶数项的值
print(sum) # 输出结果
```
经过计算,F(2)+F(4)+F(6)+……+F(20)的值为 3382。
阅读全文