紧小波框架算子的python实现
时间: 2023-07-15 17:15:25 浏览: 107
紧小波框架(Tight Wavelet Frame)算子是一种用于信号分析和图像处理的数学工具,它可以分解信号并提取出其中的特征信息。以下是一些常见的紧小波框架算子的 Python 实现:
1. Haar 紧小波框架算子实现:
``` python
import numpy as np
def haar_matrix(N):
H = np.zeros((N,N))
n = int(np.log2(N))
H[0,:] = 1/np.sqrt(N)
for j in range(n):
for k in range(2**j):
p = 2**(n-j)
q = 2*k*p
for i in range(p):
H[i+q,j+1] = 1/np.sqrt(p)
H[i+p+q,j+1] = -1/np.sqrt(p)
return H
def haar_wavelet(signal):
n = signal.size
H = haar_matrix(n)
return H.dot(signal)
```
2. Daubechies 4 紧小波框架算子实现:
``` python
import numpy as np
def daub4_matrix(N):
H = np.zeros((N,N))
a = (1+np.sqrt(3))/(4*np.sqrt(2))
b = (3+np.sqrt(3))/(4*np.sqrt(2))
c = (3-np.sqrt(3))/(4*np.sqrt(2))
d = (1-np.sqrt(3))/(4*np.sqrt(2))
for i in range(N//2):
H[2*i,2*i] = a
H[2*i,2*i+1] = b
H[2*i+1,2*i] = c
H[2*i+1,2*i+1] = d
return H
def daub4_wavelet(signal):
n = signal.size
H = daub4_matrix(n)
return H.dot(signal)
```
3. Symlet 4 紧小波框架算子实现:
``` python
import numpy as np
def sym4_matrix(N):
H = np.zeros((N,N))
a = np.sqrt(3)/4
b = (3+np.sqrt(3))/(4*np.sqrt(2))
c = (3-np.sqrt(3))/(4*np.sqrt(2))
d = np.sqrt(3)/4
e = (1+np.sqrt(3))/(4*np.sqrt(2))
f = -(1+np.sqrt(3))/(4*np.sqrt(2))
g = (3-np.sqrt(3))/(4*np.sqrt(2))
h = (3+np.sqrt(3))/(4*np.sqrt(2))
for i in range(N//2):
H[2*i,2*i] = a
H[2*i,2*i+1] = b
H[2*i,2*i+2] = c
H[2*i,2*i+3] = d
H[2*i+1,2*i] = e
H[2*i+1,2*i+1] = f
H[2*i+1,2*i+2] = g
H[2*i+1,2*i+3] = h
return H
def sym4_wavelet(signal):
n = signal.size
H = sym4_matrix(n)
return H.dot(signal)
```
这些算子的实现可以通过 numpy 库中的矩阵运算实现,代码中使用的都是基本的矩阵操作。需要注意的是,不同的紧小波框架算子的矩阵结构不同,需要根据具体的算子进行实现。
阅读全文