二维椭圆形方程五点差分python
时间: 2024-05-25 20:09:35 浏览: 191
Gauss-Seidel 五点差分
4星 · 用户满意度95%
二维椭圆形方程是一个偏微分方程,可以用来描述许多物理问题,如电场和热传导等。五点差分法是一种常见的数值求解方法,用于解决偏微分方程。以下是二维椭圆形方程五点差分的Python代码实现:
```python
import numpy as np
# 定义椭圆形方程
def f(x, y):
return 2*x**2 + 3*y**2
# 定义边界条件
def boundary_condition(x, y):
return 0
# 定义求解函数
def solve(f, boundary_condition, n=100, m=100, tol=1e-6, max_iter=10000):
h = 1/n
k = 1/m
x = np.linspace(0, 1, n+1)
y = np.linspace(0, 1, m+1)
# 初始化
u = np.zeros((n+1, m+1))
for i in range(n+1):
u[i, 0] = boundary_condition(x[i], 0)
u[i, m] = boundary_condition(x[i], 1)
for j in range(m+1):
u[0, j] = boundary_condition(0, y[j])
u[n, j] = boundary_condition(1, y[j])
# 迭代求解
for k in range(max_iter):
u_old = u.copy()
for i in range(1, n):
for j in range(1, m):
u[i, j] = (u_old[i-1, j] + u_old[i+1, j] + u_old[i, j-1] + u_old[i, j+1] - h**2*f(x[i], y[j]))/4
# 判断收敛
if np.max(np.abs(u-u_old)) < tol:
break
return u
# 求解并输出结果
u = solve(f, boundary_condition)
print(u)
```
阅读全文