时间序列预测模型matlab代码
时间: 2024-04-13 20:23:59 浏览: 154
时序预测 - MATLAB实现ARIMA时间序列预测(完整源码和数据)
5星 · 资源好评率100%
时间序列预测是一种用于预测未来时间点上的数值的模型。在MATLAB中,可以使用多种方法来实现时间序列预测。以下是一种常用的方法,使用自回归移动平均模型(ARMA):
```matlab
% 导入时间序列数据
data = readmatrix('data.csv'); % 假设数据保存在data.csv文件中
% 拆分数据为训练集和测试集
train_data = data(1:end-12); % 使用前n-12个数据作为训练集
test_data = data(end-11:end); % 使用最后12个数据作为测试集
% 训练ARMA模型
model = arima(2, 0, 1); % 创建ARMA(2,1)模型
est_model = estimate(model, train_data); % 用训练集拟合模型
% 预测未来时间点上的数值
forecast_data = forecast(est_model, 12); % 预测未来12个时间点上的数值
% 绘制预测结果
plot(data, 'b'); hold on;
plot(length(data):length(data)+11, forecast_data, 'r');
legend('原始数据', '预测结果');
```
这段代码首先导入时间序列数据,然后将数据拆分为训练集和测试集。接下来,创建ARMA(2,1)模型,并使用训练集对模型进行拟合。最后,使用拟合好的模型预测未来12个时间点上的数值,并将原始数据和预测结果绘制在同一张图上。
阅读全文