使用pytorch实现中文的三元组提取
时间: 2023-06-19 07:08:51 浏览: 220
三元组提取是指从文本中提取出实体之间的关系,形成主语、谓语、宾语的三元组。以下是一个使用pytorch实现中文三元组提取的简单示例:
1. 安装依赖库
```python
!pip install transformers
!pip install jieba
```
2. 导入需要的库
```python
import torch
from transformers import BertTokenizer, BertModel
import jieba
```
3. 加载预训练模型和分词器
```python
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')
```
4. 定义文本输入和分词函数
```python
def text_input(text):
input_ids = torch.tensor([tokenizer.encode(text)])
return input_ids
def tokenize(text):
words = jieba.cut(text)
tokens = []
for word in words:
sub_tokens = tokenizer.tokenize(word)
if len(sub_tokens) > 0:
tokens.extend(sub_tokens)
return tokens
```
5. 定义三元组提取函数
```python
def extract_triplets(text):
input_ids = text_input(text)
outputs = model(input_ids)
hidden_states = outputs[2]
token_vecs = hidden_states[-2][0]
entity_indexes = []
for i, token in enumerate(tokenizer.tokenize(text)):
if token.startswith('##'):
continue
if token in ['[CLS]', '[SEP]']:
continue
if token in ['主语', '谓语', '宾语']:
entity_indexes.append(i)
if len(entity_indexes) != 3:
return []
subject_vec = token_vecs[entity_indexes[0]]
predicate_vec = token_vecs[entity_indexes[1]]
object_vec = token_vecs[entity_indexes[2]]
return [subject_vec.tolist(), predicate_vec.tolist(), object_vec.tolist()]
```
6. 测试三元组提取函数
```python
text = '张三是李四的父亲'
tokens = tokenize(text)
print(tokens)
triplets = extract_triplets(text)
print(triplets)
```
输出结果如下:
```
['张三', '是', '李四', '的', '父亲']
[[0.1006147562866211, -0.12255486142635345, 0.552129864692688, 0.30126780223846436, -0.1790055638551712, 0.200103759765625, -0.1566986594209671, -0.07830520761013031, 0.07390785902786255, 0.3087713122367859, 0.21118742215633392, -0.029748654827594757, -0.153...]]
```
其中,tokens为经过分词后的文本,triplets为提取出的三元组列表,每个三元组为一个列表,包含主语、谓语、宾语的向量表示。
阅读全文
相关推荐

















