lstm神经网络matlab代码
时间: 2023-07-22 20:22:27 浏览: 125
以下是一个简单的LSTM神经网络的MATLAB代码示例:
```matlab
% 准备数据
input_data = randn(100, 50);
target_data = randn(100, 10);
% 设置LSTM网络参数
input_size = 50;
hidden_size = 100;
output_size = 10;
learning_rate = 0.01;
% 初始化权重和偏置
Wf = randn(hidden_size, input_size + hidden_size);
Wi = randn(hidden_size, input_size + hidden_size);
Wc = randn(hidden_size, input_size + hidden_size);
Wo = randn(hidden_size, input_size + hidden_size);
Wy = randn(output_size, hidden_size);
bf = zeros(hidden_size, 1);
bi = zeros(hidden_size, 1);
bc = zeros(hidden_size, 1);
bo = zeros(hidden_size, 1);
by = zeros(output_size, 1);
% 初始化状态变量
h_prev = zeros(hidden_size, 1);
c_prev = zeros(hidden_size, 1);
% 训练网络
for t = 1:size(input_data, 1)
% 前向传播
x = input_data(t, :)';
z = [h_prev; x];
f = sigmoid(Wf * z + bf);
i = sigmoid(Wi * z + bi);
c_bar = tanh(Wc * z + bc);
c = f .* c_prev + i .* c_bar;
o = sigmoid(Wo * z + bo);
h = o .* tanh(c);
y = Wy * h + by;
% 计算误差
target = target_data(t, :)';
error = y - target;
% 反向传播
dWy = error * h';
dby = error;
dh = (Wy' * error) .* (1 - h.^2);
do = dh .* tanh(c);
dc = (dh .* o) .* (1 - tanh(c).^2) + (c - c_prev) .* f;
dc_prev = dc .* f;
df = dc .* c_prev;
di = dc .* c_bar;
dc_bar = dc .* i;
dzf = df .* f .* (1 - f);
dzi = di .* i .* (1 - i);
dzc = dc_bar .* (1 - c_bar.^2);
dzo = do .* o .* (1 - o);
dz = [dzf; dzi; dzc; dzo];
dWf = dzf * z';
dWi = dzi * z';
dWc = dzc * z';
dWo = dzo * z';
dbf = dzf;
dbi = dzi;
dbc = dzc;
dbo = dzo;
dh_prev = dz(1:hidden_size);
dx = dz(hidden_size+1:end);
% 更新权重和偏置
Wy = Wy - learning_rate * dWy;
by = by - learning_rate * dby;
Wf = Wf - learning_rate * dWf;
Wi = Wi - learning_rate * dWi;
Wc = Wc - learning_rate * dWc;
Wo = Wo - learning_rate * dWo;
bf = bf - learning_rate * dbf;
bi = bi - learning_rate * dbi;
bc = bc - learning_rate * dbc;
bo = bo - learning_rate * dbo;
% 更新状态
h_prev = h;
c_prev = c;
end
```
这里的LSTM网络有一个输入层,一个隐藏层和一个输出层。输入数据是一个100x50的矩阵,目标数据是一个100x10的矩阵。网络的隐藏层大小为100,学习率为0.01。权重和偏置是随机初始化的。在每个时间步长上,网络接收一个50维的输入向量,并产生一个10维的输出向量。在训练期间,网络逐步更新权重和偏置,以最小化输出与目标之间的误差。
阅读全文