对-(x^2c1yz - x^2c1y - x^2w1y + x^2c1z - x^2c1 - x^2w1z + x^2c2yz - x^2r2yz - x^2c2y + x^2c2z - x^2c2 - x^2yzc1 + x^2yzr1 - xc1yz + xc1y + xw1y - xc1z + xc1 + xw1z - xc2yz + xr2yz + xc2y - xc2z + xc2 + yzc1 - yzr1)合并同类项
时间: 2023-10-16 16:08:22 浏览: 76
合并数组中相同的项
-(x^2c1yz - x^2c1y - x^2w1y + x^2c1z - x^2c1 - x^2w1z + x^2c2yz - x^2r2yz - x^2c2y + x^2c2z - x^2c2 - x^2yzc1 + x^2yzr1 - xc1yz + xc1y + xw1y - xc1z + xc1 + xw1z - xc2yz + xr2yz + xc2y - xc2z + xc2 + yzc1 - yzr1)
= (-x^2c1yz + x^2c2yz - x^2yzc1 + x^2yzr1 - xc1yz - xc1z - xc2yz + xc2z + yzc1 - yzr1) + (x^2c1z - x^2c1 - x^2c2 + x^2c2z - x^2w1z + xc1 + xw1z + xc2 - x2c2 - x2w1z - x2c1y + xc1y + xw1y - x2c2y + xc2y)
= -x^2(yz(c1 - c2) + c1*z - c1 - c2*y + c2 + yz(r1 - r2)) + x(c1 + w1*y - c1*z - w1*z - c2*y + r2*y + c2 + z(c2 - c1)) + yz(c1 - r1 + r2 - c2)
因此,化简后的一阶导数为:
-x^2(yz(c1 - c2) + c1*z - c1 - c2*y + c2 + yz(r1 - r2)) + x(c1 + w1*y - c1*z - w1*z - c2*y + r2*y + c2 + z(c2 - c1)) + yz(c1 - r1 + r2 - c2)
阅读全文