用c语言编写并调试程序,使用for循环控制语句实现上面的数据统计问题。

时间: 2023-06-24 11:08:09 浏览: 62
以下是使用 for 循环控制语句实现数据统计问题的 C 语言程序: ```c #include <stdio.h> int main() { int i, n, num; double sum = 0, avg; printf("请输入要统计的数字个数:"); scanf("%d", &n); for (i = 0; i < n; i++) { printf("请输入第 %d 个数字:", i + 1); scanf("%d", &num); sum += num; } avg = sum / n; printf("这 %d 个数字的总和为 %.2f,平均值为 %.2f\n", n, sum, avg); return 0; } ``` 程序运行时,会提示用户输入要统计的数字个数,然后使用 for 循环控制语句,依次读入每个数字,并将它们累加到变量 sum 中。最后,根据总和和数字个数计算平均值,并输出结果。 例如,如果输入要统计的数字个数为 3,且这三个数字分别为 10、20 和 30,则程序将输出: ``` 请输入要统计的数字个数:3 请输入第 1 个数字:10 请输入第 2 个数字:20 请输入第 3 个数字:30 这 3 个数字的总和为 60.00,平均值为 20.00 ```
相关问题

)数据统计问题:从键盘输入一批任意数量的正整数,统计其中不大于100 的数值个数,使用for循环控制语句编写并调试程序用c语言

以下是使用 for 循环控制语句编写的 C 语言程序,可以统计输入的正整数中不大于 100 的数值个数: ```c #include <stdio.h> int main() { int num, count = 0; printf("请输入一批正整数(以 0 结束):\n"); for (;;) { scanf("%d", &num); if (num == 0) { break; } if (num <= 100) { count++; } } printf("不大于 100 的数值个数为:%d\n", count); return 0; } ``` 程序运行后,会提示用户输入一批正整数,直到输入 0 为止。在输入过程中,如果输入的数值不大于 100,则累加计数器的值。最后输出统计结果。

用c语言编写和调试一个简单的银行家算法程序。用银行家算法实现资源分配。

### 回答1: 以下是用 C 语言编写的银行家算法程序,可以实现资源分配: ```c #include <stdio.h> // 定义最大进程数和最大资源数 #define MAX_PROCESS 10 #define MAX_RESOURCE 10 int main() { int available[MAX_RESOURCE]; // 可用资源数目 int max[MAX_PROCESS][MAX_RESOURCE]; // 每个进程所需的最大资源数 int allocation[MAX_PROCESS][MAX_RESOURCE]; // 每个进程已分配的资源数 int need[MAX_PROCESS][MAX_RESOURCE]; // 每个进程还需要的资源数 int request[MAX_RESOURCE]; // 每个进程请求的资源数 int work[MAX_RESOURCE]; // 可用资源数目的拷贝 int finish[MAX_PROCESS]; // 标记每个进程是否完成 int safe[MAX_PROCESS]; // 安全序列 int i, j, k, n, m; int count = 0; int flag = 0; // 输入资源数目和进程数目 printf("请输入资源数目和进程数目:\n"); scanf("%d %d", &m, &n); // 输入可用资源数目 printf("请输入每个资源的可用数目:\n"); for (i = 0; i < m; i++) { scanf("%d", &available[i]); } // 输入每个进程所需的最大资源数 printf("请输入每个进程所需的最大资源数:\n"); for (i = 0; i < n; i++) { printf("请输入进程 P%d 的最大资源数:\n", i); for (j = 0; j < m; j++) { scanf("%d", &max[i][j]); } } // 输入每个进程已分配的资源数 printf("请输入每个进程已分配的资源数:\n"); for (i = 0; i < n; i++) { printf("请输入进程 P%d 已分配的资源数:\n", i); for (j = 0; j < m; j++) { scanf("%d", &allocation[i][j]); need[i][j] = max[i][j] - allocation[i][j]; // 计算每个进程还需要的资源数 } } // 输入请求资源的进程号和请求的资源数 printf("请输入请求资源的进程号和请求的资源数:\n"); scanf("%d", &k); for (i = 0; i < m; i++) { scanf("%d", &request[i]); } // 判断请求是否合法 for (i = 0; i < m; i++) { if (request[i] > need[k][i]) { printf("错误:进程 P%d 请求的资源数超过了其需要的资源数!\n", k); flag = 1; break; } if (request[i] > available[i]) { printf("错误:进程 P%d 请求的资源数超过了系统可用资源数!\n", k); flag = 1; break; } } if (flag == 0) { // 模拟分配资源 for (i = 0; i < m; i++) { available[i] -= request[i]; allocation[k][i] += request[i]; need[k][i] -= request[i]; } // 初始化 work 数组 for (i = 0; i < m; i++) { work[i] = available[i]; } // 初始化 finish 数组 for (i = 0; i < n; i++) { finish[i] = 0; } // 安全检查 while (count < n) { flag = 0; for (i = 0; i < n; i++) { if (finish[i] == 0) { for (j = 0; j < m; j++) { if (need[i][j] > work[j]) { break; } } if (j == m) { for (k = 0; k < m; k++) { work[k] += allocation[i][k]; } finish[i] = 1; safe[count++] = i; flag = 1; } } } if (flag == 0) { break; } } // 输出安全序列 if (count == n) { printf("安全序列为:\n"); for (i = 0; i < n; i++) { printf("%d ", safe[i]); } printf("\n"); } else { printf("系统处于不安全状态,无法分配资源!\n"); } } return 0; } ``` 上述程序实现了银行家算法的资源分配功能,包括输入资源数目和进程数目、每个资源的可用数目、每个进程所需的最大资源数、每个进程已分配的资源数、请求资源的进程号和请求的资源数等。在输入请求资源后,程序会模拟分配资源,并进行安全检查,输出安全序列或者提示系统处于不安全状态。 ### 回答2: 银行家算法是一种资源分配和避免死锁的算法,用于处理多个进程对有限资源的请求。下面是一个用C语言编写和调试的简单银行家算法程序。 首先,我们定义一些必要的数据结构和全局变量。假设我们有5个进程和3种类型的资源。 ```c #include <stdio.h> #define NUM_PROCESSES 5 // 进程数 #define NUM_RESOURCES 3 // 资源数 int available[NUM_RESOURCES]; // 可用资源数组 int max[NUM_PROCESSES][NUM_RESOURCES]; // 进程最大资源需求矩阵 int allocation[NUM_PROCESSES][NUM_RESOURCES]; // 进程已分配资源矩阵 int need[NUM_PROCESSES][NUM_RESOURCES]; // 进程还需要资源矩阵 int work[NUM_RESOURCES]; // 工作向量 int finish[NUM_PROCESSES]; // 完成进程数组 // 初始化银行家算法的数据结构 void init() { int i, j; int initial_resources[NUM_RESOURCES] = {10, 5, 7}; // 初始可用资源 // 设置初始可用资源 for (i = 0; i < NUM_RESOURCES; i++) { available[i] = initial_resources[i]; } // 设置最大资源需求矩阵 int max_resources[NUM_PROCESSES][NUM_RESOURCES] = { {7, 5, 3}, {3, 2, 2}, {9, 0, 2}, {2, 2, 2}, {4, 3, 3} }; for (i = 0; i < NUM_PROCESSES; i++) { for (j = 0; j < NUM_RESOURCES; j++) { max[i][j] = max_resources[i][j]; } } // 初始化已分配资源矩阵和还需要资源矩阵 int allocated_resources[NUM_PROCESSES][NUM_RESOURCES] = { {0, 1, 0}, {2, 0, 0}, {3, 0, 2}, {2, 1, 1}, {0, 0, 2} }; for (i = 0; i < NUM_PROCESSES; i++) { for (j = 0; j < NUM_RESOURCES; j++) { allocation[i][j] = allocated_resources[i][j]; need[i][j] = max[i][j] - allocation[i][j]; } } } // 检查进程能否获得资源 int is_safe() { int i, j; int count = 0; // 初始化工作向量和完成进程数组 for (i = 0; i < NUM_RESOURCES; i++) { work[i] = available[i]; } for (i = 0; i < NUM_PROCESSES; i++) { finish[i] = 0; } // 寻找可以分配资源的进程 while (count < NUM_PROCESSES) { int found = 0; for (i = 0; i < NUM_PROCESSES; i++) { if (finish[i] == 0) { int j; int can_allocate = 1; for (j = 0; j < NUM_RESOURCES; j++) { if (need[i][j] > work[j]) { can_allocate = 0; break; } } if (can_allocate) { for (j = 0; j < NUM_RESOURCES; j++) { work[j] += allocation[i][j]; } finish[i] = 1; found = 1; count++; } } } if (!found) { break; } } // 检查是否分配完所有进程 for (i = 0; i < NUM_PROCESSES; i++) { if (finish[i] == 0) { return 0; } } return 1; } int main() { init(); if (is_safe()) { printf("安全状态!进程可以获得资源。\n"); } else { printf("不安全状态!进程无法获得资源。\n"); } return 0; } ``` 在以上程序中,我们首先初始化银行家算法所需数据结构,包括可用资源数组、进程最大资源需求矩阵、进程已分配资源矩阵和进程还需要资源矩阵。然后,我们实现了一个`is_safe()`函数来检查系统当前是否处于安全状态。最后,在`main()`函数中,我们调用`is_safe()`函数来判断资源分配是否安全。如果安全,打印“安全状态!进程可以获得资源。”;否则,打印“不安全状态!进程无法获得资源。”。 这是一个简单的银行家算法程序,用于实现资源分配和避免死锁。请注意,以上示例仅能体现基本的银行家算法原理,实际应用中可能需要更复杂的实现和更多的安全性检查。 ### 回答3: 银行家算法是一种用于避免死锁的资源分配算法,在实际的操作系统中广泛应用于资源管理。以下是一个简单的银行家算法程序的实现步骤: 1. 首先定义一些必要的变量和数据结构,包括进程数、资源数、进程的最大需求量、已分配资源量和可利用资源量等。 2. 初始化这些变量和数据结构,包括设置进程的最大需求量、已分配资源量和可利用资源量。 3. 编写一个函数来检查每个进程的资源请求是否满足条件,即判断请求的资源数量是否小于进程的最大需求量、小于系统可利用资源量并且不会导致死锁。 4. 如果满足条件,分配请求的资源给该进程,并更新已分配资源量和可利用资源量。 5. 如果不满足条件,则暂停该进程,并将其加入等待队列中。 6. 循环执行步骤3和4,直到没有进程满足资源请求的条件为止。 7. 当一个进程释放已分配的资源时,重新评估队列中所有进程的资源请求,并进行分配。 8. 检查所有进程的资源请求是否满足条件,如果满足则继续执行,如果不满足则暂停进程,并将其加入等待队列中。 9. 重复步骤7和8,直到所有进程完成。 此外,为了保证代码的正确性,可以采用一些调试技术,如打印输出每个步骤中的关键变量和数据结构,观察其变化情况,以及使用断点调试等方式进行程序运行的调试。 上述是一个简单的银行家算法程序的实现过程,具体的代码实现需要根据具体情况进行,例如使用数组、循环、条件语句等来实现相应的功能。编写和调试一个完整的银行家算法程序需要仔细考虑资源分配的各种可能情况,确保程序能正确地进行资源的分配和释放,从而避免死锁的发生。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩