使用MATLAB实现一个有以下流程的JPEG编码: 1.将图片转为YCrCb颜色空间 2.将图片分为8*8的矩阵,并进行离散余弦变换(DCT) 3.将DCT后的矩阵量子化 4.进行ZIGZAG排序 5.将DC分量和AC分量进行DPCM和RLE编码 6.将整体信息进行哈夫曼(Huffman)编码
时间: 2023-06-15 15:05:55 浏览: 127
好的,这是一个比较复杂的编码过程,需要较多的代码实现。我会尽可能详细地介绍每一步的实现方法。
首先,我们需要读取一张图片。假设这张图片的名称为"test.jpg",我们可以使用MATLAB自带的imread函数来读取这张图片。
```matlab
img = imread('test.jpg');
```
接下来,我们将图片转为YCrCb颜色空间。这可以使用MATLAB自带的rgb2ycbcr函数来实现。
```matlab
img_ycbcr = rgb2ycbcr(img);
```
将图片分为8*8的矩阵,并进行离散余弦变换(DCT)。这可以使用MATLAB自带的dct2函数来实现。在实现过程中,我们需要对每个8*8的块进行DCT处理。
```matlab
Q = [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
% 将每个8*8的块进行DCT处理
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_dct = dct2(block);
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_dct;
end
end
```
将DCT后的矩阵量子化。这一步需要先定义一个量化矩阵Q,然后将DCT后的矩阵除以量化矩阵Q,并向下取整。这可以使用MATLAB自带的round函数来实现。
```matlab
% 将每个8*8的块进行量化
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_dct = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_quant = round(block_dct./Q);
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_quant;
end
end
```
进行ZIGZAG排序。这一步需要将每个8*8的块中的元素按照ZIGZAG顺序排列。这可以通过一个循环来实现。
```matlab
% 将每个8*8的块进行ZIGZAG排序
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_quant = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_zigzag = zeros(1,64*3);
index = 1;
for k = 1:8
if mod(k,2) == 0
for l = k:-1:1
block_zigzag(index,:) = block_quant(l,k+1-l,:);
index = index + 1;
end
else
for l = 1:k
block_zigzag(index,:) = block_quant(l,k+1-l,:);
index = index + 1;
end
end
end
for k = 2:8
if mod(k,2) == 0
for l = k:8
block_zigzag(index,:) = block_quant(k+9-l,l,:);
index = index + 1;
end
else
for l = 8:-1:k
block_zigzag(index,:) = block_quant(k+9-l,l,:);
index = index + 1;
end
end
end
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_zigzag;
end
end
```
将DC分量和AC分量进行DPCM和RLE编码。这一步需要先对每个8*8的块的DC分量进行DPCM编码,然后对每个8*8的块的AC分量进行RLE编码。在编码AC分量时,我们需要注意到0的个数和非0数值的大小对压缩率的影响。因此,我们需要将连续的0的个数进行编码,同时对非0数值的大小进行编码。这可以使用MATLAB自带的diff函数和find函数来实现。
```matlab
% 将DC分量和AC分量进行DPCM和RLE编码
dc_code = '';
ac_code = '';
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_zigzag = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
% 对DC分量进行DPCM编码
dc_diff = diff(block_zigzag(:,1,:));
dc_diff = [block_zigzag(1,1,:); dc_diff];
dc_code = [dc_code num2str(dc_diff(1))];
% 对AC分量进行RLE编码
ac_code_block = '';
zero_count = 0;
for k = 2:size(block_zigzag,1)*size(block_zigzag,2)*size(block_zigzag,3)
if block_zigzag(k) == 0
zero_count = zero_count + 1;
else
ac_code_block = [ac_code_block num2str(zero_count) num2str(block_zigzag(k))];
zero_count = 0;
end
end
ac_code = [ac_code ac_code_block];
end
end
```
将整体信息进行哈夫曼(Huffman)编码。这一步需要先构建一个Huffman编码表,然后将DC分量和AC分量分别进行Huffman编码。在编码过程中,我们需要注意到Huffman编码的字典表需要存储在文件中,以便解码时使用。
```matlab
% 构建Huffman编码表
dc_prob = hist(dc_diff(:),unique(dc_diff(:)));
dc_prob = dc_prob/sum(dc_prob);
dc_dict = huffmandict(unique(dc_diff(:)), dc_prob);
ac_prob = hist(str2num(ac_code(:)),unique(str2num(ac_code(:))));
ac_prob = ac_prob/sum(ac_prob);
ac_dict = huffmandict(unique(str2num(ac_code(:))), ac_prob);
% 将DC分量和AC分量进行Huffman编码
dc_huff = huffmanenco(dc_diff(:), dc_dict);
ac_huff = huffmanenco(str2num(ac_code(:)), ac_dict);
% 将Huffman编码的字典表存储在文件中
save('huffmandict.mat', 'dc_dict', 'ac_dict');
```
至此,我们已经完成了整个JPEG编码的过程。为了方便解码,我们需要将DC分量的DPCM编码和AC分量的RLE编码以及Huffman编码后的结果存储在文件中,以便解码时使用。这可以使用MATLAB自带的save函数来实现。
```matlab
% 将编码结果存储在文件中
save('jpeg_code.mat', 'dc_diff', 'ac_code', 'dc_huff', 'ac_huff');
```
完整代码如下:
```matlab
% 读取图片
img = imread('test.jpg');
% 将图片转为YCrCb颜色空间
img_ycbcr = rgb2ycbcr(img);
% 定义量化矩阵Q
Q = [16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
% 将每个8*8的块进行DCT处理
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_dct = dct2(block);
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_dct;
end
end
% 将每个8*8的块进行量化
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_dct = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_quant = round(block_dct./Q);
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_quant;
end
end
% 将每个8*8的块进行ZIGZAG排序
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_quant = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
block_zigzag = zeros(1,64*3);
index = 1;
for k = 1:8
if mod(k,2) == 0
for l = k:-1:1
block_zigzag(index,:) = block_quant(l,k+1-l,:);
index = index + 1;
end
else
for l = 1:k
block_zigzag(index,:) = block_quant(l,k+1-l,:);
index = index + 1;
end
end
end
for k = 2:8
if mod(k,2) == 0
for l = k:8
block_zigzag(index,:) = block_quant(k+9-l,l,:);
index = index + 1;
end
else
for l = 8:-1:k
block_zigzag(index,:) = block_quant(k+9-l,l,:);
index = index + 1;
end
end
end
img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:) = block_zigzag;
end
end
% 将DC分量和AC分量进行DPCM和RLE编码
dc_code = '';
ac_code = '';
for i = 1:size(img_ycbcr,1)/8
for j = 1:size(img_ycbcr,2)/8
block_zigzag = img_ycbcr((i-1)*8+1:i*8,(j-1)*8+1:j*8,:);
% 对DC分量进行DPCM编码
dc_diff = diff(block_zigzag(:,1,:));
dc_diff = [block_zigzag(1,1,:); dc_diff];
dc_code = [dc_code num2str(dc_diff(1))];
% 对AC分量进行RLE编码
ac_code_block = '';
zero_count = 0;
for k = 2:size(block_zigzag,1)*size(block_zigzag,2)*size(block_zigzag,3)
if block_zigzag(k) == 0
zero_count = zero_count + 1;
else
ac_code_block = [ac_code_block num2str(zero_count) num2str(block_zigzag(k))];
zero_count = 0;
end
end
ac_code = [ac_code ac_code_block];
end
end
% 构建Huffman编码表
dc_prob = hist(dc_diff(:),unique(dc_diff(:)));
dc_prob = dc_prob/sum(dc_prob);
dc_dict = huffmandict(unique(dc_diff(:)), dc_prob);
ac_prob = hist(str2num(ac_code(:)),unique(str2num(ac_code(:))));
ac_prob = ac_prob/sum(ac_prob);
ac_dict = huffmandict(unique(str2num(ac_code(:))), ac_prob);
% 将DC分量和AC分量进行Huffman编码
dc_huff = huffmanenco(dc_diff(:), dc_dict);
ac_huff = huffmanenco(str2num(ac_code(:)), ac_dict);
% 将编码结果存储在文件中
save('jpeg_code.mat', 'dc_diff', 'ac_code', 'dc_huff', 'ac_huff');
% 将Huffman编码的字典表存储在文件中
save('huffmandict.mat', 'dc_dict', 'ac_dict');
```
阅读全文