class PoolFunc(torch.autograd.Function): @staticmethod def forward(ctx, inputs, kernel): outputs = torch.nn.functional.avg_pool2d(inputs, kernel) ctx.save_for_backward(outputs, torch.tensor(inputs.shape), torch.tensor(kernel)) return outputs @staticmethod def backward(ctx, grad_delta): (outputs, input_shape, kernel) = ctx.saved_tensors kernel = kernel.tolist() outputs = 1 / outputs outputs[outputs > kernel[0] * kernel[1] + 1] = 0 outputs /= kernel[0] * kernel[1] grad = torch.nn.functional.interpolate(grad_delta * outputs, size=input_shape.tolist()[2:]) return grad, None
时间: 2023-12-22 19:06:30 浏览: 128
这是一个使用 PyTorch 实现的自定义池化函数 PoolFunc,包括前向传播和反向传播的实现。
在前向传播中,输入 inputs 和池化核 kernel 作为参数,使用 PyTorch 提供的 avg_pool2d 函数进行平均池化操作,并将输出、输入形状和池化核保存在上下文对象 ctx 中,以备反向传播使用。
在反向传播中,首先从 ctx 中取出保存的输出、输入形状和池化核,将池化核转换为列表形式,然后计算输出的倒数,将大于池化核大小加一的部分置零,并除以池化核大小,得到梯度系数。接下来,使用 PyTorch 提供的 interpolate 函数将梯度 delta 与梯度系数相乘,并插值回输入形状的大小,得到输入的梯度 grad。
最后,返回输入的梯度 grad 和 None(因为池化核不需要更新)。
阅读全文