python实现arima
时间: 2023-12-20 13:05:16 浏览: 98
ARIMA.zip_arima_python arima_pytho实现SARIMA_时间序列_时间序列分析
以下是Python实现ARIMA时间序列预测模型的步骤:
1. 导入必要的库和数据
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
# 读取数据
data = pd.read_excel('data.xlsx', index_col='date')
```
2. 数据预处理
```python
# 将数据转换为时间序列
ts = data['value']
# 绘制时间序列图
plt.plot(ts)
plt.show()
```
3. 确定ARIMA模型的参数
```python
# 确定ARIMA模型的参数
p = d = q = range(0, 3)
pdq = [(x, y, z) for x in p for y in d for z in q]
# 选择最优的ARIMA模型参数
aic_list = []
for param in pdq:
try:
model = ARIMA(ts, order=param)
results = model.fit()
aic_list.append((param, results.aic))
except:
continue
aic_list.sort(key=lambda x: x[1])
best_param = aic_list[0][0]
print('Best ARIMA parameter:', best_param)
```
4. 拟合ARIMA模型并进行预测
```python
# 拟合ARIMA模型
model = ARIMA(ts, order=best_param)
results = model.fit()
# 进行预测
pred = results.predict(start='2021-01-01', end='2021-12-31', dynamic=True)
# 绘制预测结果图
plt.plot(ts, label='Original')
plt.plot(pred, label='Predicted')
plt.legend()
plt.show()
```
5. 评估模型的准确性
```python
# 计算均方根误差(RMSE)
rmse = np.sqrt(mean_squared_error(ts['2021-01-01':], pred))
# 输出RMSE值
print('RMSE:', rmse)
```
阅读全文