设训练集、验证集、测试集的特征数据分别为Xtrain、Xval、Xtest,独热编码后的标签分别为ytrain、yval、ytest;假设采用学习率为0.5的随机梯度下降法,进行小批量大小为20、总共10轮训练,模型名称为model_zyq
时间: 2024-05-07 21:23:49 浏览: 136
那么,可以使用以下代码训练模型:
```python
import numpy as np
from model_zyq import Model
# 创建模型对象
model = Model()
# 定义超参数
learning_rate = 0.5
batch_size = 20
epochs = 10
# 获取训练集、验证集、测试集的数据和标签
Xtrain, ytrain = ...
Xval, yval = ...
Xtest, ytest = ...
# 进行独热编码
ytrain = np.eye(num_classes)[ytrain]
yval = np.eye(num_classes)[yval]
ytest = np.eye(num_classes)[ytest]
# 定义损失函数和优化器
loss_fn = ...
optimizer = ...
# 进行训练
for epoch in range(epochs):
# 打乱训练集顺序
permutation = np.random.permutation(Xtrain.shape[0])
Xtrain = Xtrain[permutation]
ytrain = ytrain[permutation]
# 小批量训练
for i in range(0, Xtrain.shape[0], batch_size):
X = Xtrain[i:i+batch_size]
y = ytrain[i:i+batch_size]
# 前向传播
y_pred = model.forward(X)
# 计算损失
loss = loss_fn(y_pred, y)
# 反向传播
grad = model.backward(loss)
# 更新模型参数
optimizer.update(model.params, grad, learning_rate)
# 在验证集上评估模型性能
y_val_pred = model.forward(Xval)
val_loss = loss_fn(y_val_pred, yval)
val_acc = accuracy(y_val_pred, yval)
print('Epoch [{}/{}], Validation Loss: {:.4f}, Validation Accuracy: {:.4f}'.format(epoch+1, epochs, val_loss, val_acc))
# 在测试集上评估模型性能
y_test_pred = model.forward(Xtest)
test_loss = loss_fn(y_test_pred, ytest)
test_acc = accuracy(y_test_pred, ytest)
print('Test Loss: {:.4f}, Test Accuracy: {:.4f}'.format(test_loss, test_acc))
```
其中,`Model` 是模型类,需要自己定义;`loss_fn` 是损失函数,`optimizer` 是优化器,需要根据具体情况选择;`accuracy` 是计算准确率的函数,需要自己定义。
阅读全文
相关推荐
















