pytorch yolov3人脸识别
时间: 2023-12-04 19:00:32 浏览: 172
PyTorch YOLOv3是一种基于深度学习的目标检测模型,可以用于识别和定位图像中的物体。而人脸识别则是其中的一个应用场景之一。
YOLOv3的特点是运行速度快,适合实时处理大量图像数据。通过PyTorch框架,可以实现对人脸的快速准确识别。首先,需要加载预训练的YOLOv3模型,然后利用PyTorch的图像处理功能,对输入图像进行预处理,使其符合模型输入的要求。接着,将处理后的图像输入到模型中,模型将返回图像中人脸的位置和置信度等信息。最后,利用PyTorch对这些信息进行后处理和可视化,以实现对人脸的识别和标注。
在实际应用中,可以将这一模型应用于监控系统、人脸验证、人脸统计等场景中,通过对摄像头捕捉到的图像进行实时识别,实现对人脸的快速跟踪和识别。同时,利用PyTorch框架的灵活性,也可以对YOLOv3模型进行定制和调优,以适应不同的人脸识别场景和需求。
总之,通过PyTorch YOLOv3模型,可以实现人脸的快速准确识别,为人脸识别技术的应用提供了强大的工具和支持。
相关问题
pytorch环境下的yolov5算法人脸识别
对于人脸识别任务,你可以使用PyTorch实现的YOLOv5模型。YOLOv5是一种实时目标检测算法,可以用于检测和识别人脸。下面是使用YOLOv5进行人脸识别的一些步骤:
1. 安装依赖
在开始之前,需要先安装PyTorch和其他必要的依赖项。可以使用以下命令安装:
```
pip install torch torchvision opencv-python
```
2. 下载YOLOv5模型
可以从YOLOv5的GitHub仓库中下载预训练权重。如果要检测人脸,可以使用yolov5s.pt文件,该文件是一个轻量级的模型,可以在CPU上运行。
3. 加载模型
可以使用以下代码加载模型:
```
import torch
model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model='path/to/weights.pt')
```
4. 读取图像
可以使用OpenCV库读取图像:
```
import cv2
# read image
img = cv2.imread('path/to/image.jpg')
```
5. 进行人脸识别
可以使用以下代码进行人脸识别:
```
# detect faces
results = model(img)
# display results
results.show()
```
以上代码将在图像中检测人脸,并将结果显示在屏幕上。
需要注意的是,YOLOv5模型可以检测多个对象,因此在进行人脸识别时,可能需要对检测到的对象进行分类和过滤。
基于pytorch的yolov5和arcface人脸识别系统中中包含ArcFace函数的models.py文件代码
以下是基于pytorch的yolov5和arcface人脸识别系统中包含ArcFace函数的models.py文件代码:
```python
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from collections import OrderedDict
# Convolutional block
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, groups=1, bias=False, dilation=1):
super(Conv, self).__init__()
padding = (kernel_size - 1) // 2 * dilation
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, groups=groups, bias=bias, dilation=dilation)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
# Focus wh information into c space
class Focus(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, groups=1, bias=False, dilation=1):
super(Focus, self).__init__()
self.conv = Conv(in_channels * 4, out_channels, kernel_size, stride, groups, bias, dilation)
def forward(self, x):
# Concatenate the patches by channel and spatially
x = torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], dim=1)
x = self.conv(x)
return x
# CSP Bottleneck with 3 convolutions
class BottleneckCSP(nn.Module):
def __init__(self, in_channels, out_channels, shortcut=True, groups=1, expansion=0.5):
super(BottleneckCSP, self).__init__()
hidden_channels = int(out_channels * expansion)
self.conv1 = Conv(in_channels, hidden_channels, 1)
self.conv2 = Conv(in_channels, hidden_channels, 1)
self.conv3 = Conv(hidden_channels, out_channels, 1)
self.conv4 = Conv(hidden_channels, out_channels, 3, groups=groups)
self.bn = nn.BatchNorm2d(2 * out_channels)
self.act = nn.LeakyReLU(0.1)
self.shortcut = shortcut
def forward(self, x):
shortcut = x
x1 = self.conv1(x)
x2 = self.conv2(x)
x2 = self.conv4(x2)
x = torch.cat([x1, x2], dim=1)
x = self.conv3(x)
x = self.bn(x)
if self.shortcut:
x = shortcut + x
x = self.act(x)
return x
# SPP block
class SPP(nn.Module):
def __init__(self, in_channels, out_channels, kernel_sizes=[5, 9, 13]):
super(SPP, self).__init__()
hidden_channels = in_channels // 2
self.conv1 = Conv(in_channels, hidden_channels, 1)
self.conv2 = Conv(hidden_channels * (len(kernel_sizes) + 1), out_channels, 1)
self.maxpools = nn.ModuleList()
for kernel_size in kernel_sizes:
self.maxpools.append(nn.MaxPool2d(kernel_size, stride=1, padding=kernel_size // 2))
def forward(self, x):
x1 = self.conv1(x)
x2s = [x1]
for maxpool in self.maxpools:
x2 = maxpool(x)
x2s.append(x2)
x = torch.cat(x2s, dim=1)
x = self.conv2(x)
return x
# CSP Bottleneck with SPP
class BottleneckCSPSPP(nn.Module):
def __init__(self, in_channels, out_channels, shortcut=True, groups=1, expansion=0.5):
super(BottleneckCSPSPP, self).__init__()
hidden_channels = int(out_channels * expansion)
self.conv1 = Conv(in_channels, hidden_channels, 1)
self.conv2 = Conv(in_channels, hidden_channels, 1)
self.conv3 = Conv(hidden_channels, out_channels, 1)
self.conv4 = SPP(hidden_channels, hidden_channels)
self.conv5 = Conv(hidden_channels, out_channels, 1)
self.bn = nn.BatchNorm2d(2 * out_channels)
self.act = nn.LeakyReLU(0.1)
self.shortcut = shortcut
def forward(self, x):
shortcut = x
x1 = self.conv1(x)
x2 = self.conv2(x)
x2 = self.conv4(x2)
x3 = self.conv5(x2)
x = torch.cat([x1, x3], dim=1)
x = self.conv3(x)
x = self.bn(x)
if self.shortcut:
x = shortcut + x
x = self.act(x)
return x
# CSP Darknet with SPP and PAN
class CSPDarknetSPP(nn.Module):
def __init__(self, num_classes=1000, width=1.0):
super(CSPDarknetSPP, self).__init__()
self.stem = Focus(3, int(64 * width))
self.layer1 = nn.Sequential(OrderedDict([
('bottleneck0', BottleneckCSP(int(64 * width), int(128 * width))),
('bottleneck1', BottleneckCSP(int(128 * width), int(128 * width), shortcut=False)),
('bottleneck2', BottleneckCSP(int(128 * width), int(128 * width), shortcut=False)),
('bottleneck3', BottleneckCSP(int(128 * width), int(128 * width), shortcut=False)),
]))
self.layer2 = nn.Sequential(OrderedDict([
('bottleneck4', BottleneckCSP(int(128 * width), int(256 * width))),
('bottleneck5', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck6', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck7', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck8', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck9', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck10', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
('bottleneck11', BottleneckCSP(int(256 * width), int(256 * width), shortcut=False)),
]))
self.layer3 = nn.Sequential(OrderedDict([
('bottleneck12', BottleneckCSP(int(256 * width), int(512 * width))),
('bottleneck13', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck14', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck15', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck16', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck17', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck18', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
('bottleneck19', BottleneckCSP(int(512 * width), int(512 * width), shortcut=False)),
]))
self.layer4 = nn.Sequential(OrderedDict([
('bottleneck20', BottleneckCSP(int(512 * width), int(1024 * width))),
('bottleneck21', BottleneckCSP(int(1024 * width), int(1024 * width), shortcut=False)),
]))
self.conv = Conv(int(1024 * width), int(512 * width), 1)
self.bn = nn.BatchNorm2d(int(512 * width))
self.act = nn.LeakyReLU(0.1)
self.arcface = ArcFace(int(512 * width), num_classes)
def forward(self, x):
x = self.stem(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.layer1(x)
x = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.layer2(x)
x3 = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.layer3(x3)
x4 = F.max_pool2d(x, kernel_size=2, stride=2)
x = self.layer4(x4)
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
x = F.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)
x = self.arcface(x)
return x
# ArcFace head
class ArcFace(nn.Module):
def __init__(self, in_features, out_features):
super(ArcFace, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
self.weight.data.normal_(0, 0.01)
self.margin = nn.Parameter(torch.FloatTensor([0.5]))
self.margin.requiresGrad = False
self.cos_m = math.cos(self.margin)
self.sin_m = math.sin(self.margin)
self.mm = self.sin_m * self.margin
self.threshold = math.cos(math.pi - self.margin)
def forward(self, x):
cosine = F.linear(F.normalize(x), F.normalize(self.weight))
sine = torch.sqrt(1.0 - torch.pow(cosine, 2))
phi = cosine * self.cos_m - sine * self.sin_m
phi = torch.where(cosine > self.threshold, phi, cosine - self.mm)
return phi
```
阅读全文