匈牙利算法最优指派代码
时间: 2024-04-27 10:17:06 浏览: 112
匈牙利算法,也称为Kuhn-Munkres算法,是一种用于解决最优指派问题的经典算法。最优指派问题是指在给定的n个任务和n个执行者之间,找到一种最佳的任务分配方式,使得总成本或总收益最小或最大。
以下是匈牙利算法的最优指派代码示例(使用Python语言):
```python
import numpy as np
def hungarian_algorithm(cost_matrix):
# 创建一个副本以避免修改原始矩阵
cost_matrix = np.array(cost_matrix)
# 初始化行和列的标记数组
rows, cols = cost_matrix.shape
row_covered = np.zeros(rows, dtype=bool)
col_covered = np.zeros(cols, dtype=bool)
# 执行步骤1:减去每一行的最小值
for i in range(rows):
min_val = np.min(cost_matrix[i])
cost_matrix[i] -= min_val
# 执行步骤2:减去每一列的最小值
for j in range(cols):
min_val = np.min(cost_matrix[:, j])
cost_matrix[:, j] -= min_val
# 执行步骤3:标记零元素并尝试进行指派
while True:
# 标记所有包含零元素的行和列
marked_rows, marked_cols = mark_zeros(cost_matrix)
# 如果没有更多的零元素,则算法结束
if len(marked_rows) == 0:
break
# 尝试进行指派
while True:
# 找到一个未被指派的零元素
unassigned_zero = find_unassigned_zero(cost_matrix, marked_rows, marked_cols)
# 如果找不到未被指派的零元素,则进行步骤5
if unassigned_zero is None:
step = 5
min_val = np.inf
for i in range(rows):
for j in range(cols):
if not marked_rows[i] and not marked_cols[j]:
min_val = min(min_val, cost_matrix[i, j])
# 执行步骤5:将最小未被覆盖元素减去所有未被覆盖元素,并将其加到被覆盖两次的元素上
for i in range(rows):
for j in range(cols):
if marked_rows[i]:
cost_matrix[i, j] += min_val
if not marked_cols[j]:
cost_matrix[i, j] -= min_val
else:
# 标记该零元素并找到与之关联的其他零元素
marked_rows[unassigned_zero] = True
marked_cols[unassigned_zero] = False
# 返回最终的指派结果
assignment = []
for i in range(rows):
for j in range(cols):
if cost_matrix[i, j] == 0:
assignment.append((i, j))
return assignment
def mark_zeros(cost_matrix):
rows, cols = cost_matrix.shape
marked_rows = np.zeros(rows, dtype=bool)
marked_cols = np.zeros(cols, dtype=bool)
for i in range(rows):
for j in range(cols):
if cost_matrix[i, j] == 0 and not marked_rows[i] and not marked_cols[j]:
marked_rows[i] = True
marked_cols[j] = True
return marked_rows, marked_cols
def find_unassigned_zero(cost_matrix, marked_rows, marked_cols):
rows, cols = cost_matrix.shape
for i in range(rows):
for j in range(cols):
if cost_matrix[i, j] == 0 and marked_rows[i] and not marked_cols[j]:
return (i, j)
return None
# 示例用法
cost_matrix = [[4, 1, 3],
[2, 0, 5],
[3, 2, 2]]
assignment = hungarian_algorithm(cost_matrix)
print("最优指派结果:")
for row, col in assignment:
print(f"任务 {row+1} 分配给执行者 {col+1}")
```
这段代码实现了匈牙利算法,通过传入一个成本矩阵来计算最优的任务指派结果。你可以根据自己的需求修改成本矩阵,并根据实际情况进行适当的调整。
阅读全文