Mobil换道模型python代码
时间: 2024-06-18 13:02:39 浏览: 514
Mobil换道模型是一种常用的交通流模型,主要用于研究车辆在高速公路等道路上的换道行为。它的核心思想是将车辆视为具有一定决策能力的个体,根据周围环境和自身特性来决定是否进行换道操作。
关于Mobil换道模型的Python代码实现,可以参考以下步骤:
1. 安装Python模拟器,例如SUMO或者Vissim。
2. 导入相关Python库,例如traci库,用于与模拟器进行交互。
3. 创建车辆类,包括车辆的属性和方法。
4. 实现Mobil换道模型的主要函数,包括计算加速度、计算换道意愿、计算换道目标等。
5. 在模拟器中调用相关函数,模拟车辆的行驶和换道行为。
如果您需要更具体的代码实现细节或者更深入的讨论,欢迎您提出更具体的问题。
相关问题
Python实现车辆换道模型
车辆换道模型主要是用于模拟车辆在多车道道路上的换道行为。下面是一个简单的Python实现,基于IDM和MOBIL模型:
```python
import numpy as np
class Vehicle:
def __init__(self, x, v, a, d, lane):
self.x = x # 车辆位置
self.v = v # 车辆速度
self.a = a # 车辆加速度
self.d = d # 车辆长度
self.lane = lane # 车辆所在车道
class Road:
def __init__(self, length, lanes):
self.length = length # 道路长度
self.lanes = lanes # 车道数
self.vehicles = [[] for _ in range(lanes)] # 每条车道上的车辆列表
def add_vehicle(self, vehicle):
lane = vehicle.lane
self.vehicles[lane].append(vehicle)
def remove_vehicle(self, vehicle):
lane = vehicle.lane
self.vehicles[lane].remove(vehicle)
def get_front_vehicle(self, vehicle):
lane = vehicle.lane
pos = vehicle.x
front_pos = self.length
front_vehicle = None
for v in self.vehicles[lane]:
if v != vehicle and v.x > pos and v.x < front_pos:
front_pos = v.x
front_vehicle = v
return front_vehicle, front_pos
def idm_acc(vehicle, front_vehicle, front_pos, delta_t, a_max, b, v_des):
s_star = vehicle.d + vehicle.v * delta_t + (vehicle.v * (vehicle.v - front_vehicle.v)) / (2 * np.sqrt(a_max * b))
acc = a_max * (1 - (vehicle.v / v_des)**4 - (s_star / (front_pos - vehicle.d - vehicle.x))**2)
return acc
def mobil_lane_change(vehicle, front_vehicle, back_vehicle, delta_t, a_max, b, v_des, p, s0):
if front_vehicle is None:
return False
if back_vehicle is None:
back_pos = -np.inf
else:
back_pos = back_vehicle.x
delta_v = front_vehicle.v - vehicle.v
s_star = vehicle.d + vehicle.v * delta_t + (vehicle.v * delta_v) / (2 * np.sqrt(a_max * b))
acc = idm_acc(vehicle, front_vehicle, front_vehicle.x, delta_t, a_max, b, v_des)
if acc < -b:
acc = -b
if vehicle.v + acc * delta_t > v_des:
acc = (v_des - vehicle.v) / delta_t
if front_vehicle.x - vehicle.x < s_star:
return False
if vehicle.x - back_pos < s0:
return False
if np.random.rand() > p:
return False
return True
def simulate(road, delta_t, a_max, b, v_des, p, s0):
for lane in range(road.lanes):
for vehicle in road.vehicles[lane]:
front_vehicle, front_pos = road.get_front_vehicle(vehicle)
back_vehicle, back_pos = None, None
if len(road.vehicles[lane]) > 1:
idx = road.vehicles[lane].index(vehicle)
if idx > 0:
back_vehicle = road.vehicles[lane][idx-1]
back_pos = back_vehicle.x
acc = idm_acc(vehicle, front_vehicle, front_pos, delta_t, a_max, b, v_des)
if mobil_lane_change(vehicle, front_vehicle, back_vehicle, delta_t, a_max, b, v_des, p, s0):
vehicle.lane = lane - 1
road.vehicles[lane].remove(vehicle)
road.vehicles[lane-1].append(vehicle)
continue
vehicle.a = acc
vehicle.v += acc * delta_t
vehicle.x += vehicle.v * delta_t
```
假设有一条双车道的道路,长度为1000米,车道宽度为3.5米,最大速度为120 km/h。我们可以按照以下方式模拟车辆行驶:
```python
delta_t = 0.1 # 时间步长
a_max = 3 # 最大加速度 m/s^2
b = 3 # 最大减速度 m/s^2
v_des = 33.33 # 最大速度 m/s
p = 0.5 # 换道概率
s0 = 2 # 最小车距 m
road = Road(length=1000, lanes=2)
for i in range(20):
x = np.random.rand() * 800 + 100
v = np.random.rand() * v_des
a = 0
d = 5
lane = 0 if i % 2 == 0 else 1
vehicle = Vehicle(x, v, a, d, lane)
road.add_vehicle(vehicle)
for _ in range(1000):
simulate(road, delta_t, a_max, b, v_des, p, s0)
```
这里我们先生成20辆随机车辆,然后模拟1000秒的行驶过程。每秒钟调用一次simulate函数,更新每辆车的位置和速度。在simulate函数中,我们先计算车辆的加速度,然后判断是否需要换道,最后更新车辆的位置和速度。
SUMO-idm跟驰模型代码
SUMO-idm跟驰模型是一种基于间距-速度控制的车辆跟驰模型,其代码实现如下:
```python
class IDMVehicle(AVLaneVehicle):
"""
A vehicle using the IDM acceleration model.
This vehicle implements the IDM car-following model. Additionally, it may
use the MOBIL lane-changing model to change lanes.
Parameters
----------
* see parents *
idm_params : dict, optional
Dictionary with parameters for the IDM model. The default value is
`{'a': 1.3, 'b': 2.0, 'v0': 30, 'T': 1.5, 's0': 2, 'delta': 4}`.
For a description of the parameters, please refer to the `IDM model
wikipedia page <https://en.wikipedia.org/wiki/Intelligent_driver_model>`_.
Notes
-----
The MOBIL model is only used if the `lane_change_controller` is set to a
`MobilLaneChanger` instance.
Examples
--------
>>> from flow.controllers import IDMController, ContinuousRouter
>>> from flow.core.params import VehicleParams, SumoParams
>>>
>>> sumo_params = SumoParams(sim_step=0.1, render=False)
>>> vehicle_params = VehicleParams()
>>> vehicle_params.add(
... "human",
... acceleration_controller=(IDMController, {}),
... routing_controller=(ContinuousRouter, {}),
... num_vehicles=20)
>>>
>>> # create a network and a scenario
>>> from flow.networks import HighwayNetwork
>>> from flow.scenarios import Scenario
>>> from flow.core.params import NetParams
>>> from flow.core.params import InitialConfig
>>> from flow.scenarios import HighwayScenario
>>> from flow.envs.ring.accel import IDMVehicle
>>>
>>> network = HighwayNetwork(
... name='highway',
... vehicles=vehicle_params,
... net_params=NetParams(),
... initial_config=InitialConfig(
... spacing="uniform",
... lanes_distribution=float("inf"),
... lanes_count=2
... )
... )
>>> scenario = HighwayScenario(
... name='highway',
... generator_class=HighwayGenerator,
... vehicles=vehicle_params,
... net_params=NetParams(),
... initial_config=InitialConfig(
... spacing="uniform",
... lanes_distribution=float("inf"),
... lanes_count=2
... )
... )
>>>
>>> # create the environment
>>> from flow.envs import HighwayPOEnv
>>> env = HighwayPOEnv(
... env_params=EnvParams(),
... sim_params=sumo_params,
... scenario=scenario,
... simulator='traci'
... )
>>>
>>> # run the simulation
>>> obs = env.reset()
>>> for i in range(100):
... action = [1, 0]
... obs, rewards, dones, info = env.step(action)
... if i % 10 == 0:
... env.render()
>>> env.close()
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.idm_params = kwargs.get(
"idm_params", {'a': 1.3, 'b': 2.0, 'v0': 30, 'T': 1.5, 's0': 2,
'delta': 4})
def get_accel(self, env):
"""See parent class."""
leader = self.get_leader(env)
if leader is None:
return self.idm_params["a"]
v = env.k.vehicle.get_speed(self.id)
v_leader = env.k.vehicle.get_speed(leader)
dv = max(0, v_leader - v)
s = env.k.vehicle.get_headway(self.id)
s_star = self.idm_params["s0"] + max(
0, v * self.idm_params["T"] + v * dv /
(2 * np.sqrt(self.idm_params["a"] * self.idm_params["b"])))
return self.idm_params["a"] * (
1 - np.power(v / self.idm_params["v0"], self.idm_params["delta"])
- np.power(s_star / s, 2))
```
其中,`get_accel`方法是计算车辆加速度的主要函数。在该函数中,根据跟驰模型的公式计算出车辆的期望车头间距`s_star`,然后根据该期望车头间距计算车辆的加速度。具体来说,该模型主要包含以下几个参数:
- `a`:车辆加速度的最大值;
- `b`:车辆减速度的最大值;
- `v0`:车辆的期望速度;
- `T`:期望的时间间隔,即车辆跟前车保持的时间间隔;
- `s0`:车辆的最小车头间距;
- `delta`:车辆速度对加速度的影响因子。
通过调整这些参数,可以对车辆的行为进行调整。
阅读全文